Reporting assignment
 Fundamentals of Mathematical and Computing Sciences: Applied Mathematical Science

2015-7-23

Taiji Suzuki (Room W707, post W8-46)
e-mail: suzuki.t.ct@m.titech.ac.jp
Solve the following problems. Post that to the mailbox located on 3rd floor between East and West wings of W8 building.

Due date: August 10th (Monday).

The operator norm $\|\cdot\|_{\infty}$, the trace norm $\|\cdot\|_{\operatorname{Tr}}$ and the Frobenius norm $\|\cdot\|_{F}$ are defined as in the lecture:

$$
\|A\|_{\infty}=\sigma_{1}(A), \quad\|A\|_{\mathrm{Tr}}=\sum_{i=1}^{p} \sigma_{i}(A), \quad\|A\|_{F}=\sqrt{\sum_{i, j} A_{i, j}^{2}}=\sqrt{\sum_{i=1}^{p} \sigma_{i}^{2}(A)},
$$

for $A \in \mathbb{R}^{M \times N}$ where $\sigma_{i}(A)$ is the i-th largest singular value, and $p=\min \{M, N\}$.

1. Prove that

$$
\|A\|_{\operatorname{Tr}}=\sup _{A^{\prime} \in \mathbb{R}^{M \times N}:\left\|A^{\prime}\right\|_{\infty} \leq 1}\left\langle A, A^{\prime}\right\rangle,
$$

and, based on this relation, show that

$$
\|A+B\|_{\operatorname{Tr}} \leq\|A\|_{\operatorname{Tr}}+\|B\|_{\operatorname{Tr}}
$$

for all $A, B \in \mathbb{R}^{M \times N}$.
2. Prove that

$$
\|A\|_{\mathrm{Tr}}=\frac{1}{2} \min _{U, V: A=U V^{\top}}\left\{\|U\|_{F}^{2}+\|V\|_{F}^{2}\right\} \quad\left(A \in \mathbb{R}^{M \times N}\right) .
$$

You may use the fact that for a symmetric matrix $S \in \mathbb{R}^{d \times d}$ we have $\sum_{j=1}^{k} \lambda_{j}(S)=$ $\max _{U \in \mathbb{R}^{k \times d}: U U^{\top}=I} \operatorname{Tr}\left[U S U^{\top}\right]$ for $k \leq d$ where $\lambda_{j}(S)$ is the j-th largest eigenvalue of S.
3. Prove that

$$
\|A\|_{\operatorname{Tr}} / \sqrt{d} \leq\|A\|_{F} \leq\|A\|_{\operatorname{Tr}}
$$

for all matrix $A \in \mathbb{R}^{M \times N}$ that has rank d.
4. Prove that the i.i.d. standard normal random variable sequence $g_{i} \sim N(0,1)(i=1, \ldots, n)$ satisfies

$$
\frac{\sqrt{n}}{2} \leq \mathrm{E}\left[\sqrt{\sum_{i=1}^{n} g_{i}^{2}}\right] \leq \sqrt{n} .
$$

5. Write your idea about an application of low rank matrix estimation that you think is interesting.
