Fundamentals of Mathematical and Computing Sciences:
Applied Mathematical Science

Part III: Low rank matrix estimation (Lecture 5) Advanced topics

2015-7-24

Taiji Suzuki (Room W707, post W8-46)
e-mail: suzuki.t.ct@m.titech.ac.jp
The following topic will be explained in this document:

- Efficient randomized method for SVD of very large (near) low rank matrix

1 Preliminary

We want to compute the SVD of a very large matrix A :

$$
A=\underbrace{U}_{M \times d} \times \underbrace{\Sigma}_{d \times d} \times \underbrace{V^{\top}}_{d \times N} \in \mathbb{R}^{M \times N} .
$$

Suppose a situation where M, N are very large, say 10^{6}, but d is not large, say 10^{3}.

2 Algorithm

1. Draw a $N \times d$ Gaussian random matrix $\Omega\left(\Omega_{i, j} \sim N(0,1)\right.$, i.i.d. $)$.
2. Compute $Y=A \Omega \in \mathbb{R}^{M \times d}$ (Y is much smaller than the original matrix A).
3. Compute an orthonormal matrix $Q \in \mathbb{R}^{M \times d}\left(Q^{\top} Q=I\right)$ such that columns of Q spans the image of Y.
4. Compute $B=Q^{\top} A\left(=Q^{\top} U \Sigma V^{\top}\right) \in \mathbb{R}^{d \times N}$. Note that B is a small matrix.
5. Compute SVD of $B ; B=U_{B} \Sigma_{B} V_{B}^{\top}$.
6. Obtain $U=Q U_{B}$.

Note that $Q B=Q Q^{\top} A=A$. The third step can be executed in a standard way such as the Gram-Schmidt orthonormalization.

Verification:

- The columns of Y spans the image of A almost surely. Thus the columns of Q also spans the image of A a.s..
- Therefore Q can be written as $Q=U S$ for some $S \in \mathbb{R}^{d \times d}$. Here $Q^{\top} Q=I$ implies $S^{\top} U^{\top} U S=S^{\top} S=I$. That is, S is orthogonal.
- Thus $B=Q^{\top} A=S^{\top} U^{\top} A=S^{\top} \Sigma V^{\top}$. This yields $S^{\top}=U_{B}$ and $V=V_{B}$. In particular, $Q U_{B}=Q S^{\top}=U S S^{\top}=U$.

3 Theory

Q: What happens if the rank of A is larger than d ?

Theorem 1. For any $k \geq 2$ and $p \geq 2$ such that $k+p=d \leq \min \{M, N\}$, we have that

$$
\mathrm{E}\left[\left\|A-Q Q^{\top} A\right\|_{F}\right] \leq\left(1+\sqrt{\frac{k}{p-1}}\right) \sigma_{k+1}+\frac{e \sqrt{d}}{p}\left(\sum_{j>k} \sigma_{j}^{2}\right)^{1 / 2}
$$

Moreover, we have the following deviation bound.
Theorem 2. For any $k \geq 2$ and $p \geq 4$ such that $k+p=d \leq \min \{M, N\}$, we have that

$$
\left\|A-Q Q^{\top} A\right\|_{F} \leq\left(1+t \sqrt{\frac{12 k}{p}}\right)\left(\sum_{j>k} \sigma_{j}^{2}\right)^{1 / 2}+u t \frac{e \sqrt{d}}{p+1} \sigma_{k+1}
$$

with probability as least $1-\left(5 t^{-p}+2 e^{-u^{2} / 2}\right)$.
See [1] for the details and the proofs of these theorems.

References

[1] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217-288, 2011.

