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The following topic will be explained in this document:

• Efficient randomized method for SVD of very large (near) low rank matrix

1 Preliminary
We want to compute the SVD of a very large matrix A:

A = U︸︷︷︸
M×d

× Σ︸︷︷︸
d×d

× V ⊤︸︷︷︸
d×N

∈ RM×N .

Suppose a situation where M,N are very large, say 106, but d is not large, say 103.

2 Algorithm� �
1. Draw a N × d Gaussian random matrix Ω (Ωi,j ∼ N(0, 1), i.i.d.).
2. Compute Y = AΩ ∈ RM×d (Y is much smaller than the original matrix A).
3. Compute an orthonormal matrix Q ∈ RM×d (Q⊤Q = I) such that columns of Q

spans the image of Y .
4. Compute B = Q⊤A (= Q⊤UΣV ⊤) ∈ Rd×N . Note that B is a small matrix.
5. Compute SVD of B; B = UBΣBV

⊤
B .

6. Obtain U = QUB .� �
Note that QB = QQ⊤A = A. The third step can be executed in a standard way such as the
Gram-Schmidt orthonormalization.
Verification:

• The columns of Y spans the image of A almost surely. Thus the columns of Q also
spans the image of A a.s..

• Therefore Q can be written as Q = US for some S ∈ Rd×d. Here Q⊤Q = I implies
S⊤U⊤US = S⊤S = I. That is, S is orthogonal.

• Thus B = Q⊤A = S⊤U⊤A = S⊤ΣV ⊤. This yields S⊤ = UB and V = VB . In
particular, QUB = QS⊤ = USS⊤ = U .

3 Theory
Q: What happens if the rank of A is larger than d?
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Theorem 1. For any k ≥ 2 and p ≥ 2 such that k + p = d ≤ min{M,N}, we have that

E[∥A−QQ⊤A∥F ] ≤

(
1 +

√
k

p− 1

)
σk+1 +

e
√
d

p

∑
j>k

σ2
j

1/2

.

Moreover, we have the following deviation bound.

Theorem 2. For any k ≥ 2 and p ≥ 4 such that k + p = d ≤ min{M,N}, we have that

∥A−QQ⊤A∥F ≤

(
1 + t

√
12k

p

)∑
j>k

σ2
j

1/2

+ ut
e
√
d

p+ 1
σk+1,

with probability as least 1− (5t−p + 2e−u2/2).

See [1] for the details and the proofs of these theorems.
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