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The following two computational methods for the low rank matrix estimation will be ex-
plained.

• ADMM (Alternating Direction Method of Multiplier) for trace norm regularization.
• Gibbs sampling for Bayes estimator.

1 ADMM (Alternating Direction Method of Multiplier)

1.1 Procedure of ADMM

We want to solve the following problem:

min
A∈RM×N

∥Y −X (A)∥2 + C∥A∥Tr, (1)

where Y = [y1, . . . , yn]
⊤ ∈ Rn, X (A) = (⟨Xi, A⟩)ni=1Rn.

ADMM is a method to solve the following linearly constrained optimization problem [4, 2]:

min
x∈Rn,y∈Rn′

f(x) + g(y) (2a)

s.t. B1x+B2y = b. (2b)

The optimization problem (1) can be rewritten as

min
A,A′∈RM×N

∥Y −X (A)∥2 + C∥A′∥Tr (3a)

s.t. A−A′ = O, (3b)

which is a special form of the problem (2).
Consider the augmented Lagrangian defined as

L(x, y, λ) = f(x) + g(y)− λ⊤(B1x+B2y − b) +
ρ

2
∥B1x+B2y − b∥2.

Here, ρ is a parameter (usually ρ = 1 is chosen). Then, ADMM procedure is given as follows:
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ADMM:
Initialize y0, λ0. For k = 0, 1, 2, . . .

xk+1 = argmin
x

L(x, yk, λk)

yk+1 = argmin
y

L(xk+1, y, λk)

λk+1 = λk − ρ(B1x+B2y − b)� �
If the update of (x, y) is replaced by the joint minimizer (xk+1, yk+1) = argminx,y L(x, y, λk),
then it gives Hestens-Powell’s multiplier method [6, 8, 9]. ADMM minimizes the aug-
mented Lagrangian L with respect to x and y alternatively.

1.2 Intuition of ADMM

If the optimization problem (2) is solvable, the optimal solution (x∗, y∗, λ∗) satisfies

f(x∗) + g(y∗) = max
λ

min
x,y

L(x, y, λ).

Now let λ∗ be the optimal dual variable of the RHS, then

max
λ

min
x,y

L(x, y, λ)

= f(x∗) + g(y∗)− λ∗⊤(B1x
∗ +B2y

∗ − b) +
ρ

2
∥B1x

∗ +B2y
∗ − b∥2

(= f(x∗) + g(y∗) (∵ B1x
∗ +B2y

∗ − b = 0)).

Since (x∗, y∗) minimizes L(x, y, λ∗), by (sub-)differentiating L, we have

∇f(x∗)−B⊤
1 λ

∗ + ρB⊤
1 (B1x

∗ +B2y
∗ − b) = 0,

∇g(y∗)−B⊤
2 λ

∗ + ρB⊤
2 (B1x

∗ +B2y
∗ − b) = 0.

Since B1x
∗ +B2y

∗ − b =0, this gives the following KKT condition:

∇f(x∗)−B⊤
1 λ

∗ = 0,

∇g(y∗)−B⊤
2 λ

∗ = 0.

On the other hand, yk+1 = argminy L(xk+1, y, λk) indicates

∇g(yk+1)−B⊤
2 λ

k + ρB⊤
2 (B1x

k+1 +B2y
k+1 − b) = 0

⇒∇g(yk+1)−B⊤
2 λ

k+1 = 0.

Therefore λk+1 is updated so that the optimality condition is satisfied.

1.3 Computation of ADMM update

Let X ∗ be the conjugate of the linear operator X , that is, X ∗ : Rn → RM×N that satisfies
⟨Y,X (A)⟩ = ⟨X ∗(Y ), A⟩ for all A ∈ RM×N . Then the update of A is given by

Ak+1 =

(
X ∗X +

ρI

2

)−1(
λk

2
+ X ∗(Y ) + ρA′k

)
.
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The update of A′ is given by

A′k+1 = argmin
A′∈RM×N

{
C

ρ
+

1

2
∥A′ − (Ak+1 − λk

ρ
)∥2F
}
.

This is a special case of so called proximal mapping. The proximal mapping associated
with a convex function ψ is defined by

prox(q|ψ) = argmin
x

(
ψ(x) +

1

2
∥x− q∥2

)
.

Here let
STC′(σ) = max{σ − C ′, 0},

for σ > 0, C ′ > 0. Then the update of A′ is explicitly given as follows.

Lemma 1. Let Qk := Ak+1 − λk

ρ and its SVD be Qk = UDiag(σ1, . . . , σp)V
⊤. Then

A′k+1 = U


STC

ρ
(σ1)

. . .

STC
ρ
(σp)

V ⊤,

In summary, the ADMM procedure for the trace norm regularization problem (3) is given
as follows.� �

ADMM for trace norm regularization:

Ak+1 =

(
X ∗X +

ρI

2

)−1(
λk

2
+ X ∗(Y ) + ρA′k

)
,

A′k+1 = U


STC

ρ
(σ1)

. . .

STC
ρ
(σp)

V ⊤,

λk+1 = λk − ρ(Ak+1 −A′k+1).� �
Note that ADMM can be applied to many other regularized sparse estimation problems.

1.4 Convergence of ADMM

Theorem 2. If B1 and B2 have full column rank and the optimization problem (2) is solvable,
then there exists an optimal variable (x∗, y∗) such that

f(xk) + g(yk) → f(x∗) + g(y∗)

(xk, yk) → (x∗, y∗).

Theorem 3 (Linear convergence of ADMM). If g is strongly convex, ∇g is Lipschitz contin-
uous, B1 has full column rank, B2 has full row rank, and there exists (x∗, y∗, λ∗) satisfying
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the KKT condition, then ∃C0, δ > 0 such that∥∥∥∥∥∥
xkyk
λk

−

x∗y∗
λ∗

∥∥∥∥∥∥ ≤ (1− δ)kC0.

[7] gives a proof of Theorem 2, [5] showed O(1/k) convergence of ADMM, and [3] showed
the linear convergence (Theorem 3).

2 Bayes estimator
Assume that the rank of A∗ is known, say d. We consider the prior distribution of U, V for
A = UV ⊤ which is given by

π(U, V |d) =
M∏
i=1

d∏
j=1

1√
2πσ2

p

exp

(
−
U2
i,j

2σ2
p

)
×

N∏
i=1

d∏
j=1

1√
2πσ2

p

exp

(
−
V 2
i,j

2σ2
p

)
.

Q: How to sample A from the posterior distribution?
A: Gibbs sampling.

Let Dn : {(Xi, Yi)}ni=1. Here we assume that the noise {ϵi}ni=1 is i.i.d. Gaussian N(0, σ2).
Then the likelihood function is given by

n∏
i=1

1√
2πσ2

exp

(
− (Yi − ⟨Xi, A⟩)2

2σ2

)
.

Basically the Gibbs sampling is given by the following procedure.� �
Gibbs sampling: Iterate

Uk+1 ∼ π(U |V k, Dn)

V k+1 ∼ π(V |Uk+1, Dn)� �
Let vec be the vectorization of a matrix. Then the posterior distribution of U conditioned

by V is given by

π(U |V,Dn) ≃ exp

(
−1

2
∥vec(U)−G−1

V qV ∥2GV

)
,

where qV = 1
σ2

∑n
i=1 vec(YiV Xi) and GV = 1

σ2

∑n
i=1 vec(V Xi)vec(V Xi)

⊤ + I
σ2
p
. This is the

density function of N(G−1
V qV , G

−1
V ).

Similarly, we have

π(V |U,Dn) ≃ exp

(
−1

2
∥vec(V )−H−1

U rU∥2HU

)
,

where rU = 1
σ2

∑n
i=1 vec(YiUX

⊤
i ) and HU = 1

σ2

∑n
i=1 vec(UX

⊤
i )vec(UX⊤

i )⊤+ I
σ2
p
. This is the

density function of N(H−1
U rU ,H

−1
U ).
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� �
Important point: We employed the Gaussian distribution as the prior distribution.
Then the (conditional) posterior distribution is also Gaussian distribution. Prior dis-
tributions which give posterior distributions in the same class as the prior are called
conjugate prior.� �

Therefore the Gibbs sampling procedure is summarized as follows.� �
Gibbs sampling for low rank matrix estimation: Iterate

vec(Uk+1) ∼ N(G−1
V kqV k , G−1

V k)

vec(V k+1) ∼ N(H−1
Uk+1rUk+1 ,H−1

Uk+1)� �
It is known that the distribution of (Uk, Vk) converges to the posterior π(U, V |Dn).
Based on Gibbs sampling, the posterior mean is estimated by

Â =
1

K −K0 + 1

K∑
k=K0

UkV k⊤,

for sufficiently large K0 ≪ K.
For more information about Bayes estimator, see [1].
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