
2.2 Convergence Theorems in Integrations

For measurable f1, f2, . . . , f , suppose that fn → f a.e.-µ. It does not always hold that

lim
n→∞

∫
fn dµ =

∫
f dµ. (*)

Example 2.5 Ω = [0, 1], µ = λ = P. Let Xn =

n, ω ∈ [0, 1/n],

0, ω ∈ (1/n, 1].

⇒ E(Xn) = 1 but Xn(ω) → 0 as n → ∞ a.e.-λ.

Question Under which condition, (*) holds?

Thm. 2.1 (Monotone Convergence Theorem)� �
For measurable f1, f2, . . ., f s.t. fn ≥ 0 & fn ↑ f a.e.-µ

lim
n→∞

∫
Ω

fn(ω)µ(dω) =

∫
Ω

f(ω)µ(dω)

� �
Using this, we can show the following.

Cor. 2.1� �
f + g is well-defined,

∫
f dµ and

∫
g dµ exist, and

∫
f dµ+

∫
g dµ is well-defined

⇒
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ� �

Cor. 2.2� �
f1, f2, . . . are nonnegative and measurable ⇒∫

Ω

∞∑
i=1

fi(ω)µ(dω) =
∞∑
i=1

∫
Ω

fi(ω)µ(dω)

� �
Remark 2.3 Using the corollary, we can show that, when X is a r.v. either discrete or

absolutely continuous ⇒

E(X) =

∫
Ω

X(ω)P(dω) =


∞∑
i=1

xi P(X = xi) X is discrete,∫
x f(x) dx X is continuous with density f

The monotone convergence theorem can be extended as follows.

Cor. 2.3� �
For measurable f1, f2, . . ., f & g,

i) ∀n, fn ≥ g with
∫
g dµ > −∞ & fn ↑ f ⇒

∫
fn dµ ↑

∫
f dµ

ii) ∀n, fn ≤ g with
∫
g dµ < ∞ & fn ↓ f ⇒

∫
fn dµ ↓

∫
f dµ� �
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More general results of this type can be obtained if we replace limits by upper or lower

limits.

Lem. 2.1 (Fatou’s Lemma)� �
For measurable f1, f2, . . . & f ,

i) ∀n, fn ≥ f with
∫
f dµ > −∞ ⇒ lim inf

n→∞

∫
fn dµ ≥

∫
lim inf
n→∞

fn dµ

ii) ∀n, fn ≤ f with
∫
f dµ < +∞ ⇒ lim sup

n→∞

∫
fn dµ ≤

∫
lim sup
n→∞

fn dµ� �
Thm. 2.2 (Dominated Convergence Thm.)� �
For measurable f1, f2, . . ., f & µ-integrable g s.t. fn → f a.e.-µ & |fn| ≤ g a.e.-µ

lim
n→∞

∫
fn dµ =

∫
f dµ

� �
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3 Convergence of Sequences of Measurable

Functions

Consider other types of convergence than fn → f a.e.-µ.

Def. 3.1� �
Let p ≥ 1.

• Lp = Lp(Ω,F , µ) :=
{
measurable f s.t.

∫
|f |p dµ < ∞

}
• For f ∈ Lp, ∥f∥p =

(∫
|f |p dµ

)1/p

� �
Remark 3.1 We can see that Lp is a vector space. However, ∥ · ∥p is not a norm on Lp

(but a seminorm; see Minkowski’s inequality A.2 and the remark thereafter in Appendix).

Def. 3.2� �
f1, f2, . . . , f : Ω → R, F/B(R)-measurable

i) If f1, f2, . . . , f ∈ Lp(Ω,F , µ), fn converges to f in Lp or fn →L
p

f

⇔ ∥fn − f∥p → 0 ⇔
∫
|fn − f |p dµ → 0 as n → ∞

ii) fn converges to f in measure µ or fn →µ f

⇔ ∀ϵ > 0, µ{ω ∈ Ω : |fn(ω)− f(ω)| ≥ ϵ} → 0 as n → ∞
When µ = P (probability measure), convergence in probability fn →P f

iii) fn converges to f almost uniformly in µ or fn → f a.u.-µ

⇔ ∀ϵ > 0, ∃A ∈ F s.t. µ(Ac) < ϵ and fn → f uniformly on A� �
Example 3.1 Ω = [0, 1], µ = λ = P.

• Xn =

n, ω ∈ [0, 1/n]

0, ω ∈ (1/n, 1]
⇒ Xn → 0 a.s.

P(Xn ≥ ϵ) = 1/n for ϵ < 1 ⇒ Xn →P 0

However, for p > 0,∫
|Xn(ω)|p dω = np−1 →

1, p = 1

+∞, p > 1
⇒ Xn ̸→L

p

0.

• Xn,m(ω) =

1, ω ∈
(
m−1
n

, m
n

]
0, o.w.

m = 1, 2, . . . , n, n = 1, 2, 3, . . .

⇒
∫
|Xn,m(ω)|p dω = 1

n
→ 0 ⇒ X1,1, X2,1, X2,2, X3,1, X3,2, X3,3, . . . →L

p

0

P(Xn,m ≥ ϵ) = 1/n for ϵ ≤ 1 ⇒ Xn,m →P 0
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However, for any ω ∈ (0, 1], lim supXn,m(ω) = 1, lim infXn,m(ω) = 0

⇒ Xn,m does not converge a.s. nor a.u-P

We compare these types of convergence.

Thm. 3.1� �
f1, f2, . . . , f ∈ Lp (p > 0), fn →L

p

f ⇒ fn →µ f� �
This is an immediate consequence of Markov’s inequality A.1 in Appendix.

Thm. 3.2� �
fn → f a.u.-µ ⇒ fn →µ f & fn → f a.e.-µ� �
Thm. 3.3 (Egorov’s Thm.)� �
If µ is finite, fn → f a.e.-µ ⇔ fn → f a.u.-µ� �

Remark 3.2 If µ is finite, fn → f a.e.-µ ⇒ fn →µ f

A Appendix

A.1 Useful Inequalities in Integrations

Thm. A.1 (Hölder’s Inequality)� �
For 1 < p, q < ∞ s.t. 1/p+ 1/q = 1, f ∈ Lp, g ∈ Lq

⇒ f g ∈ L1 and ∥f g∥1 ≤ ∥f∥p ∥g∥q� �
Remark A.1 When p = q = 2 ⇒ Schwarz’s inequality(∫

|f g| dµ
)2 ≤ ∫

|f |2 dµ
∫
|g|2 dµ

Thm. A.2 (Minkowski’s Inequality)� �
For 1 ≤ p < ∞, f, g ∈ Lp ⇒ f + g ∈ Lp and ∥f + g∥p ≤ ∥f∥p + ∥g∥p� �

By Minkowski’s inequality along with ∥c f∥p = |c| ∥f∥p for f ∈ Lp and c ∈ R, we can see

that Lp is a vector space.

Lem. A.1 (Markov-Chebyshev Inequality)� �
h: Ω → R, Measurable and nonnegative

ϕ: R+ → R, positive and nondecreasing

For ϵ > 0, µ({ω | h(ω) ≥ ϵ}) ≤ 1

ϕ(ϵ)

∫
ϕ(h) dµ

� �
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Chebyshev’s Inequality

Let µ = P and X be a random variable.

E(X) =

∫
Ω

X(ω)P(dω), Var(X) = E[(X − E(X))2] =

∫
Ω

(X(ω)− E(X))2 P(dω)

⇒ Take h(ω) = |X(ω)− E(X)|, ϕ(x) = x2 in Lem. A.1

P(|X − E(X)| ≥ ϵ) ≤ Var(X)

ϵ2
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