2.2 Convergence Theorems in Integrations

For measurable f_1, f_2, \ldots, f , suppose that $f_n \to f$ a.e.- μ . It does not always hold that

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu. \tag{*}$$

Example 2.5 $\Omega = [0,1], \mu = \lambda = \mathsf{P}.$ Let $X_n = \begin{cases} n, & \omega \in [0,1/n], \\ 0, & \omega \in (1/n,1]. \end{cases}$ $\Rightarrow \mathsf{E}(X_n) = 1 \text{ but } X_n(\omega) \to 0 \text{ as } n \to \infty \text{ a.e.} -\lambda.$

Question Under which condition, (*) holds?

For measurable f_1, f_2, \dots, f s.t. $f_n \ge 0$ & $f_n \uparrow f$ a.e.- μ $\lim_{n \to \infty} \int_{\Omega} f_n(\omega) \,\mu(\mathrm{d}\omega) = \int_{\Omega} f(\omega) \,\mu(\mathrm{d}\omega)$

Using this, we can show the following.

Cor. 2.1 f + g is well-defined, $\int f d\mu$ and $\int g d\mu$ exist, and $\int f d\mu + \int g d\mu$ is well-defined $\Rightarrow \int (f + g) d\mu = \int f d\mu + \int g d\mu$

- Cor. 2.2 f_1, f_2, \ldots are nonnegative and measurable \Rightarrow

$$\int_{\Omega} \sum_{i=1}^{\infty} f_i(\omega) \,\mu(\mathrm{d}\omega) = \sum_{i=1}^{\infty} \int_{\Omega} f_i(\omega) \,\mu(\mathrm{d}\omega)$$

Remark 2.3 Using the corollary, we can show that, when X is a r.v. either discrete or absolutely continuous \Rightarrow

$$\mathsf{E}(X) = \int_{\Omega} X(\omega) \,\mathsf{P}(\mathrm{d}\omega) = \begin{cases} \sum_{i=1}^{\infty} x_i \,\mathsf{P}(X = x_i) & X \text{ is discrete,} \\ \int x \,f(x) \,\mathrm{d}x & X \text{ is continuous with density } f \end{cases}$$

The monotone convergence theorem can be extended as follows.

For measurable
$$f_1, f_2, \dots, f \& g$$
,
i) $\forall n, f_n \ge g$ with $\int g \, d\mu > -\infty \& f_n \uparrow f \Rightarrow \int f_n \, d\mu \uparrow \int f \, d\mu$
ii) $\forall n, f_n \le g$ with $\int g \, d\mu < \infty \& f_n \downarrow f \Rightarrow \int f_n \, d\mu \downarrow \int f \, d\mu$

More general results of this type can be obtained if we replace limits by upper or lower limits.

For measurable $f_1, f_2, \dots \& f$, i) $\forall n, f_n \ge f$ with $\int f \, d\mu > -\infty \Rightarrow \liminf_{n \to \infty} \int f_n \, d\mu \ge \int \liminf_{n \to \infty} f_n \, d\mu$ ii) $\forall n, f_n \le f$ with $\int f \, d\mu < +\infty \Rightarrow \limsup_{n \to \infty} \int f_n \, d\mu \le \int \limsup_{n \to \infty} f_n \, d\mu$

- Thm. 2.2 (Dominated Convergence Thm.) For measurable $f_1, f_2, ..., f \& \mu$ -integrable g s.t. $f_n \to f$ a.e.- $\mu \& |f_n| \le g$ a.e.- μ $\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu$

3 Convergence of Sequences of Measurable Functions

Consider other types of convergence than $f_n \to f$ a.e.- μ .

Let
$$p \ge 1$$
.
• $L^p = L^p(\Omega, \mathcal{F}, \mu) := \left\{ \text{measurable } f \text{ s.t. } \int |f|^p \, \mathrm{d}\mu < \infty \right\}$
• For $f \in L^p$, $\|f\|_p = \left(\int |f|^p \, \mathrm{d}\mu\right)^{1/p}$

Remark 3.1 We can see that L^p is a vector space. However, $\|\cdot\|_p$ is not a norm on L^p (but a seminorm; see Minkowski's inequality A.2 and the remark thereafter in Appendix).

Def. 3.2
f₁, f₂,..., f: Ω → ℝ, F/B(ℝ)-measurable
i) If f₁, f₂,..., f ∈ L^p(Ω, F, μ), f_n converges to f in L^p or f_n ^{L^p}→ f ⇔ ||f_n - f||_p → 0 ⇔ ∫ |f_n - f|^p dμ → 0 as n → ∞
ii) f_n converges to f in measure μ or f_n ^μ→ f ⇔ [∀]ε > 0, μ{ω ∈ Ω : |f_n(ω) - f(ω)| ≥ ε} → 0 as n → ∞ When μ = P (probability measure), convergence in probability f_n ^P→ f
iii) f_n converges to f almost uniformly in μ or f_n → f a.u.-μ

 $\Leftrightarrow \forall \epsilon > 0, \exists A \in \mathcal{F} \text{ s.t. } \mu(A^c) < \epsilon \text{ and } f_n \to f \text{ uniformly on } A$

Example 3.1 $\Omega = [0, 1], \mu = \lambda = P.$

•
$$X_n = \begin{cases} n, & \omega \in [0, 1/n] \\ 0, & \omega \in (1/n, 1] \end{cases} \Rightarrow X_n \to 0 \text{ a.s.}$$

$$P(X_n \ge \epsilon) = 1/n \text{ for } \epsilon < 1 \Rightarrow X_n \xrightarrow{P} 0$$
However, for $p > 0$,

$$\int |X_n(\omega)|^p d\omega = n^{p-1} \to \begin{cases} 1, & p = 1 \\ +\infty, & p > 1 \end{cases} \Rightarrow X_n \xrightarrow{L^p} 0.$$
•
$$X_{n,m}(\omega) = \begin{cases} 1, & \omega \in \left(\frac{m-1}{n}, \frac{m}{n}\right] \\ 0, & \text{o.w.} \end{cases} m = 1, 2, \dots, n, \quad n = 1, 2, 3, \dots$$

$$\Rightarrow \int |X_{n,m}(\omega)|^p d\omega = \frac{1}{n} \to 0 \Rightarrow X_{1,1}, X_{2,1}, X_{2,2}, X_{3,1}, X_{3,2}, X_{3,3}, \dots \xrightarrow{L^p} 0$$

$$P(X_{n,m} \ge \epsilon) = 1/n \text{ for } \epsilon \le 1 \Rightarrow X_{n,m} \xrightarrow{P} 0$$

However, for any $\omega \in (0, 1]$, $\limsup X_{n,m}(\omega) = 1$, $\liminf X_{n,m}(\omega) = 0$ $\Rightarrow X_{n,m}$ does not converge a.s. nor a.u-P

We compare these types of convergence.

Thm. 3.1 $f_1, f_2, \dots, f \in L^p \ (p > 0), \quad f_n \xrightarrow{L^p} f \Rightarrow f_n \xrightarrow{\mu} f$

This is an immediate consequence of Markov's inequality A.1 in Appendix.

Thm. 3.2 $f_n \to f \text{ a.u.-}\mu \Rightarrow f_n \xrightarrow{\mu} f \& f_n \to f \text{ a.e.-}\mu$

- Thm. 3.3 (Egorov's Thm.) -If μ is finite, $f_n \to f$ a.e.- $\mu \Leftrightarrow f_n \to f$ a.u.- μ

Remark 3.2 If μ is finite, $f_n \to f$ a.e.- $\mu \Rightarrow f_n \xrightarrow{\mu} f$

A Appendix

A.1 Useful Inequalities in Integrations

For $1 < p, q < \infty$ s.t. $1/p + 1/q = 1, f \in L^p, g \in L^q$ $\Rightarrow f g \in L^1 \text{ and } ||fg||_1 \le ||f||_p ||g||_q$

Remark A.1 When $p = q = 2 \Rightarrow$ Schwarz's inequality $(\int |f g| d\mu)^2 \leq \int |f|^2 d\mu \int |g|^2 d\mu$

 $\sim \text{Thm. A.2 (Minkowski's Inequality)}$ For $1 \le p < \infty$, $f, g \in L^p \Rightarrow f + g \in L^p$ and $||f + g||_p \le ||f||_p + ||g||_p$

By Minkowski's inequality along with $||c f||_p = |c| ||f||_p$ for $f \in L^p$ and $c \in \mathbb{R}$, we can see that L^p is a vector space.

Lem. A.1 (Markov-Chebyshev Inequality) $h: \Omega \to \mathbb{R}$, Measurable and nonnegative $\phi: \mathbb{R}_+ \to \mathbb{R}$, positive and nondecreasing For $\epsilon > 0$, $\mu(\{\omega \mid h(\omega) \ge \epsilon\}) \le \frac{1}{\phi(\epsilon)} \int \phi(h) \, \mathrm{d}\mu$

Chebyshev's Inequality

Let
$$\mu = \mathsf{P}$$
 and X be a random variable.
 $\mathsf{E}(X) = \int_{\Omega} X(\omega) \mathsf{P}(\mathrm{d}\omega), \ \mathsf{Var}(X) = \mathsf{E}[(X - \mathsf{E}(X))^2] = \int_{\Omega} (X(\omega) - \mathsf{E}(X))^2 \mathsf{P}(\mathrm{d}\omega)$
 $\Rightarrow \operatorname{Take} h(\omega) = |X(\omega) - \mathsf{E}(X)|, \ \phi(x) = x^2 \text{ in Lem. A.1}$
 $\mathsf{P}(|X - \mathsf{E}(X)| \ge \epsilon) \le \frac{\mathsf{Var}(X)}{\epsilon^2}$