2.2 Convergence Theorems in Integrations

For measurable f, fo, ..., f, suppose that f, — f a.e.-u. It does not always hold that
i [ fodu= [ fan *)
n—o0

n, w € [0,1/n],

Example 2.5 Q= [0,1], u=A=P. Let X, =
0, w e (1/n,1].

= E(X,) =1 but X, (w) — 0 as n — 00 a.e.-\.

Question Under which condition, (*) holds?

Thm. 2.1 (Monotone Convergence Theorem)

For measurable fi, fo,..., fst. f,>0& f, T f ae-u

ggggmwmmozﬁfwmmw

Using this, we can show the following.

s Cor. 2.1 ~
[+ g is well-defined, [ fdp and [ gdp exist, and [ fdu+ [ gdp is well-defined
= [(f+g)du= [ fdp+ [gdu
N J
s Cor. 2.2 ~
f1, f2, ... are nonnegative and measurable =
|3t =3 [ i) uaw
Q=1 i=1 /O
N J

Remark 2.3 Using the corollary, we can show that, when X is a r.v. either discrete or

absolutely continuous =

i r;P(X =x;) X is discrete,
E(X) = /Q X (w) P(dw) = { S

x f(zx)dx X is continuous with density f

The monotone convergence theorem can be extended as follows.

r Cor. 2.3 N
For measurable f1, fo,..., f & g,

i) Yn, fn > g with [gdp > —co & fu ¥ f = [fadpt [ fdp

Kii)Vn,fnﬁgwithfgdu<oo&fn¢f:$ffnduiffdu )

14



More general results of this type can be obtained if we replace limits by upper or lower

limits.

9
~ Lem. 2.1 (Fatou’s Lemma) N
L& f,

For measurable fi, fo, ..

i) n, f, > f with [ fdu> —o00 = liminf/fnd,u > /liminffnd,u
n—o0 n—oo

i) "n, fn < f with [ fdp < 400 = lim sup/fn dp < /lim sup f, du
n—00 n—00
N
e Thm. 2.2 (Dominated Convergence Thm.) ~

For measurable f1, fa, ..., f & p-integrable g s.t. f, = f ae-p & |fu| < g ae-p
lim /fn dp =

Tim [ fan

N J
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3 Convergence of Sequences of Measurable

Functions

Consider other types of convergence than f, — f a.e.-p.

/‘Def. 3.1 ~N
Let p > 1.

o [P =[P F, pu):= {measurable f st /]f|p dp < oo }

p

1/
e For feLP, ||f],= |fIP dp
N </ ) J

Remark 3.1 We can see that L? is a vector space. However, || - ||, is not a norm on L

(but a seminorm; see Minkowski’s inequality A.2 and the remark thereafter in Appendix).

s Def. 3.2 ~
fi, fay -y f: Q@ = R, F/B(R)-measurable

i) If f1, fo,..., f € LP(Q, F, 1), fn converges to f in L or o5 f
S fu—=fllp =0 [|fa— fIPdp—0asn — oo

ii) f, converges to f in measure por f, % f
S %e>0, p{lweQ: | fulw) — flw)]>e - 0asn— o
When = P (probability measure), convergence in probability f, = f

iii) f, converges to f almost uniformly in yor f, — f a.u.-u

L & % >0,?A € F st pu(A°) < eand f, — f uniformly on A )

Example 3.1 Q= [0,1], u =\ =P.

n, wel0,1/n]
o X, = = X, = 0as.
0, w e (1/n,1]
P(X,>e)=1/nfore<1l = X, > 0

However, for p > 0,

1, —1
[ 1Xn(w)]P dw = nP~t — P =X, 2% 0
400, p>1
17 WE ;17@
o X, m(w) = ( " "} m=12,...,n, n=1,2,3,...

0, 0.W.
= [[Xpm@)Pdw=1 =0 = Xi1,Xo1, X002 X31,X32,X33,... 5 0
PXpm>€)=1/nfore<1l = X,,— 0
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However, for any w € (0, 1], limsup X, ,,(w) =1, liminf X, ,,(w) =0

= X,,,m» does not converge a.s. nor a.u-P

We compare these types of convergence.

—/

Thm. 3.1
[flaf?a-"afeLp (p>0), fnL_p> f:>fni> f

This is an immediate consequence of Markov’s inequality A.1 in Appendix.
s Thm. 3.2
kfn = fau-u = f, 5 f&f,— fae-u

~ Thm. 3.3 (Egorov’s Thm.)

NN/

\If w is finite, f, — f ae-u < f, — fau-u

Remark 3.2 If p is finite, f, — f ae-p = fo & f

A Appendix

A.1 Useful Inequalities in Integrations

Thm. A.1 (Hélder’s Inequality)

For 1l <p,g<oost.l/p+1/qg=1, fe LPr ge L1
= fgeLtand [|fgll <|fllllglly

Remark A.1 When p = ¢ = 2 = Schwarz’s inequality
2
(J1f gldu)” < [1fPdp [ 1gl* dp

Thm. A.2 (Minkowski’s Inequality)
[For l<p<oo, fige L’ = f+gelland |f +gll, <fll, + llglly ]

By Minkowski’s inequality along with ||c f||, = |c| || ||, for f € L? and ¢ € R, we can see

that L? is a vector space.

- Lem. A.1 (Markov-Chebyshev Inequality) ~

h: Q — R, Measurable and nonnegative

¢: Ry — R, positive and nondecreasing

For ¢ > 0, u({w | hw) > ¢}) < ﬁ / o(h) dy
\_ J
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Chebyshev’s Inequality
Let 4 =P and X be a random variable.

E(X) = / X(w) P(dw), Var(X) = E[(X — E(X))) = / (X(w) — E(X))? P(dw)
= Take h(w) = | X (w) — E(X)|, ¢(z) = 2% in Lem. A.1
Var(X)

€2

P(IX —E(X)[=¢) <

18



