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Part I: Mathematical Optimization
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1 Preliminaries

We assume that convexity and closeness (openness) of sets are familiar concepts for the readers.
Let ⟨ , ⟩ be an arbitrary inner product on Rn. Given a linear operator A : Rn −→ Rm, its

adjoint operator A∗ : Rm −→ Rn is such that

⟨A(x),y⟩ = ⟨x,A∗(y)⟩, ∀x ∈ Rn, ∀y ∈ Rm.

Definition 1.1 A set K ⊆ Rn is called cone if for any positive scalar α > 0 and an arbitrary
element x of K, αx ∈ K.

Definition 1.2 A cone is said to be pointed if K ∩−K = {0}.

Definition 1.3 Given a cone K ⊆ Rn, its dual cone is defined as K∗ := {x ∈ Rn | ⟨x,y⟩ ≥ 0, ∀y ∈
K}.

Definition 1.4 If a cone is such that K∗ = K, it is called self-dual.

Definition 1.5 Let K be a pointed, closed convex cone with nonempty interior. Then K is ho-
mogeneous if for every pair x,y ∈ int(K), there exists T ∈ Aut(K) such that T (y) = x, where
Aut(K) is the automorphism group of K.

Definition 1.6 Let K be a pointed, closed convex cone with nonempty interior. Then K is sym-
metric if K is homogeneous and self-dual.

Theorem 1.7 (Separation theorem for convex sets [Ben-Tal-Nemirovski]) LetA,B nonempty
non-intersecting convex subsets of Rn. Then, ∃s ∈ Rn, s ̸= 0 such that

sup
a∈A

⟨a, s⟩ ≤ inf
b∈B

⟨b, s⟩.

1.1 Exercises

1. If K is a closed convex cone, prove that its dual K∗ is also a closed convex cone. Also in this
case, show that (K∗)∗ = K.

2. Let K be a cone. Show that K is convex if and only if a+ b ∈ K for ∀a, b ∈ K.

2



2 Conic Linear Program

The Linear Program (LP) is the most basic mathematical optimization problem. We will start
defining a generalization of the LP.

The Conic Linear Program (CLP) is defined as follows1:

(CLP)


minimize ⟨c,x⟩
subject to A(x) = b,

x ∈ K,

where c ∈ Rn, b ∈ Rm, A(·) is an linear operator, and K is a closed convex cone in Rn.
The dual problem of (CLP) is defined as2:

(DCLP)


maximize ⟨b,y⟩
subject to A∗(y) + s = c,

s ∈ K∗,

where the inner product is defined on Rm now. Notice that K∗ is a closed convex cone, too.

Example 2.1 If we chose K = Rn
+, A := A ∈ Rm×n, and ⟨c,x⟩ = cTx, (CLP) becomes an

LP. Likewise, taking K = Sn+, the cone of positive semidefinite symmetric matrices, and the inner
product which defines the Frobenius norm, we have a Semidefinite Program (SDP); K = Qn

+ :=
{x ∈ Rn | x21 ≥

∑n
i=2 x

2
i }, the second-order cone, we have a Second-Order Cone Program (SOCP).

The following result known as weak duality is a simple consequence of above facts.

Lemma 2.2 (Weak Duality) Let x be feasible for (CLP) and (y, s) feasible for (DCLP). Then
⟨b,y⟩ ≤ ⟨c,x⟩.

Proof:
⟨c,x⟩ − ⟨b,y⟩ = ⟨x, c⟩ − ⟨A(x),y⟩ = ⟨x, c−A∗(y)⟩ = ⟨x, s⟩ ≥ 0 since x ∈ K and s ∈ K∗.

The following example shows that strong duality does not hold in general.

minimize

⟨
−1
0
0
0

 ,


x1
x2
x3
x4


⟩

subject to

(
1 0 0 1
0 1 1 0

)
x1
x2
x3
x4

 =

(
1
0

)
x ∈ K = {x ∈ R4 | x21 + x22 ≤ x23, x3, x4 ≥ 0}

maximize

⟨(
1
0

)
,

(
y1
y2

)⟩

subject to


−1
0
0
0

−


y1
0
0
y1

−


0
y2
y2
0

 ∈ K∗ = K.

Both problems are feasible, but the optimal value of the primal is 0 while for the dual is −1.

1strictly speaking, the term “minimize” should be replaced by “infimum”
2strictly speaking, the term “maximize” should be replaced by “supremum”
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Theorem 2.3 (Strong Duality) If (CLP) is bounded from below and it is strictly feasible (i.e,
∃x ∈ int(K) and A(x) = b), then (DCLP) is solvable and its optimal value coincides with the one
of (CLP). The result is valid if the roles of (CLP) and (DCLP) are exchanged.

Proof:
Let cval be the optimal value of (CLP) which exists by the assumption. We need to show that

(DCLP) is solvable and have the same optimal value.
For c = 0, cval = 0 and the existence of the feasible solution y = 0, s = 0 for (DCLP) is

evident.
Now let c ̸= 0. Consider the set

M = {x ∈ Rn | A(x) = b, ⟨c,x⟩ ≤ cval}.

It is clear that M ̸= ∅. Also M ∩ int(K) = ∅. In fact, if we assume on the contrary that ∃x̄ ∈
M ∩ int(K), since c ̸= 0 and x̄ is an interior point, we can always construct a x̂ ∈ Rn feasible for
(CLP) which ⟨c, x̂⟩ < cval with contradicts the optimality. If we are in the case where this is not
possible, x̄ will be the optimal solution of (CLP). We can see in this case that for any n ∈ Rn

such that A(n) = 0, then ⟨c,n⟩ = 0. Therefore, ∃ȳ ∈ Rm such that A∗(ȳ) = c and it follows that
(ȳ,0) ∈ Rm ×K∗ is an optimal solution for (DCLP).

From Theorem 1.7, ∃s̄ ∈ Rn such that s̄ ̸= 0 and

sup
x∈M

⟨x, s̄⟩ ≤ inf
x∈int(K)

⟨x, s̄⟩.

Since M is nonempty and K is a cone, we have in fact that

sup
x∈M

⟨x, s̄⟩ ≤ 0 = inf
x∈K

⟨x, s̄⟩. (1)

Therefore, due to this fact, s̄ ∈ K∗. From the definition of M , we can conclude that in fact ∃ᾱ ∈ R,
∃β̄ ≥ 0, and ∃ȳ ∈ Rm such that s̄ = ᾱA∗(ȳ) + β̄c. This can be seen since ∀x ∈ M ,

⟨x, s̄⟩ = ⟨A(x), ᾱȳ⟩+ ⟨x, β̄c⟩
= ⟨b, ᾱȳ⟩+ β̄⟨x, c⟩ ≤ constant + β̄cval.

We will show now in fact that β̄ > 0. From the assumption, ∃x̄ ∈ int(K) such that A(x̄) = b.
Then 0 < ⟨x̄, s̄⟩ = ⟨x̄, ᾱA∗(ȳ)⟩ = ᾱ⟨b, ȳ⟩ ≤ 0, where the first strict inequality follows from 0 ̸= s̄ ∈
K∗ and the last inequality from (1). This is a contradiction and then β̄ > 0.

Finally, if we define

s̄

β̄
:= c−A∗

(
− ᾱ

β̄
ȳ

)
s̄

β̄
∈ K∗,

and s̄
β̄
becomes feasible for (DCLP).

Also from (1), ∀x ∈ M , ⟨
x,

s̄

β̄

⟩
=

⟨
b,

ᾱ

β̄
ȳ

⟩
+ ⟨c,x⟩ ≤ 0

and therefore, ⟨c,x⟩ ≤ ⟨b,− ᾱ
β̄
ȳ⟩. However, since we have taken an x(∈ Rn) with A(x) = b such that

⟨c,x⟩ ≤ cval, we have
⟨
b,− ᾱ

β̄
ȳ
⟩
≥ cval. Finally from weak duality (Lemma 2.2),

⟨
b,− ᾱ

β̄
ȳ
⟩
= cval,

which shows the desired result.
The similar result for (DCLP) is left for exercise.
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