Lecture 5

5 Finite Field

5.1 Finite field of characteristic p

- Characteristic of a field F: The additive order of 1 in F, and it must be a prime number p.
- A finite field F of characteristic p is a vector space over $\mathbb{F}_p = \mathbb{Z}/(p)$, and hence $\#F = p^n$ for some n.
- The multiplicative group F^{\times} of F of order $q = p^n$ has order q 1, and every $\alpha \in F^{\times}$ satisfies the equation $X^{q-1} = 1$. Hence the every element of F satisfies

$$f(X) = X^q - X = 0.$$

This implies that the plynomial f(X) has q distinct roots in F, and we have

$$f(X) = \prod_{\alpha \in F} (X - \alpha).$$

Thus F is a splitting field of $f(X) \in \mathbb{F}_p[X]$, the smallest extension of \mathbb{F}_p which contains all roots of f(X).

- The splitting field is unique up to isomorphism (Homework 1), and the isomorphism class of F dependes only of the order $q = p^n$. Thus we have confirmed that if there exists a field of order q, then its isomorphism class is unique.
- Examples : A splitting field of $X^4 X \in \mathbb{F}_2[X]$ is isomorphic to $\mathbb{F}_2[Y]/(Y^2 + Y + 1)$.

Proof. In fact, we have a factorization

$$X^4 - X = X(X - 1)(X - Y)(X - (Y + 1)).$$

• Theorem 5.1.1: For each prime p and each integer $n \geq 1$, there exists a finite field of order $q = p^n$ unique up to isomorphism (hence we denote it by \mathbb{F}_q).

Proof. Consider the splitting field F of

$$X^q - X = f(X)$$

in the algebraic closure $\mathbb{F}_p^{\text{alg}}$. We will show first of all that the set of roots of f(X), namely

$$\{\alpha \in \mathbb{F}_p^{\text{alg}} \, ; \, f(\alpha) = 0\}$$
 (1)

forms a field. In fact, the followings are easy to check:

- 1. 0, 1 are roots of f(X).
- 2. If α, β are roots of f(X), so are $\alpha + \beta$ and $\alpha\beta$.
- 3. If $\alpha \neq 0$ is a root of f(X), so is α^{-1} .
- 4. If α is a root of f(X), so is $-\alpha$.

This implies in particular that the splitting field F of f(X) is equal to the set (1) of roots of f(X).

Now, since the derivative of f(X) is -1, f(X) has no multiple roots (Homework 2), and hence the set (1) of roots of f(X) contains exactly q elements.

5.2 Multiplicative group F^{\times}

• Theorem 5.2.1: The multiplicative group F^{\times} of a finite field F is cyclic.

Proof. If α has order m, then it is a root of $f(X) = X^m - 1$. On the other hand, f(X) = 0 has at most m roots in F. Therefore, we have

$$\#\{\alpha \in F^{\times}; \, \alpha^m = 1\} \le m \tag{2}$$

for any m. Notice that F^{\times} is abelian.

Assume that F^{\times} is not cyclic, then by the fundamental theorem of abelian groups, there is some prime r such that F^{\times} contains a subgroup isomorphic to $\mathbb{Z}/r\mathbb{Z} \times \mathbb{Z}/r\mathbb{Z}$. Then the number of elements of order r is more than $r^2 - 1 > r$. This contradicts to (2).

5.3 Homework

- 1. Show that the splitting field of $f(X) \in k[X]$ is unique up to isomorphism.
- 2. Show that if $f(X) \in k[X]$ has a multiple root, then f(X), f'(X) have common factor in k[X].
- 3. Find the splitting field of $X^{p^8} 1$ over \mathbb{F}_p .
- 4. Let p be prime and $q = p^n$. Show that every element of \mathbb{F}_q has a unique p-th root in \mathbb{F}_q .
- 5. Suppose K is a field of characteristic p, and let $\alpha \in K$. Show that if α has no p-th root in K, then $X^{p^n} a$ is irreducible in K[X] for all positive integers n.
- 6. Show that every element of a finite field can be written as a sum of two squares in that field.