Lecture 4

4 Geometric Constructuion

4.1 Naive Thought in Euclidean Age

- What is a geometric construction?
- Tools : Compass and Ruler without marking.
- Example : How to draw a bisector for a given angle !
- Question : Is it possible to construct a trisector for a give angle ?

4.2 Formulate Problem

- Start with two points on the plane, say $(0,0)$ and $(1,0)$ in euclidean coordinates. What we can do is

1. To draw a line through two exsiting points on the plane.
2. To record the distance between two exsiting points by compass.
3. To draw a circle on the plane where the center is an existing point and a radius is a recorded distance.
4. To record the intersecton of two curves (line and/or circle) on the plane.

- Exercise :

1. Draw an equilatelal tiangle!
2. Draw a square!
3. Draw a regular pentagon (Homework 3)!

- Exercise :

1. If $a, b \in \mathbb{R}$ are recorded, then $a \pm b$ can be recorded.
2. If $a, b \in \mathbb{R}$ are recorded, then $a b$ can be recorded.

3 . If $a, b \in \mathbb{R}$ are recorded, then a / b can be recorded.
4. If $a \in \mathbb{R}$ is recorded, then \sqrt{a} can be recorded.

- Again start with two initial points $p_{0}=(0,0)$ and $p_{1}=(1,0)$ on the plane. Suppose we recorded m points P_{m} on the plane by the construciton above, say,

$$
P_{m}=\left\{p_{0}, p_{1}, \cdots, p_{m} \in \mathbb{R}^{2}\right\}
$$

Using the coordinates of $p_{i}=\left(x_{i}, y_{i}\right)$, arrange the numbers such as

$$
x_{0}, y_{0}, x_{1}, y_{1}, x_{2}, x_{3}, \cdots
$$

We then let Q_{n} be the set consisting of the first n distinct numbers in the above ordered sequence. Thus, we obtained an increasing siquence

$$
\{0,1\}=Q_{2} \subset Q_{3} \subset \cdots \subset Q_{n} \subset \cdots
$$

of the sets of recorded real numbers.

- Letting K_{n} be the field generated by Q_{n} over \mathbb{Q}, and we obtain a sequence of simple field extensions :

$$
\mathbb{Q}=K_{2} \subset K_{3} \subset \cdots \subset K_{n} \subset \cdots
$$

- Theorem 4.1.1 : $\left[K_{n+1}: K_{n}\right]=1$ or 2 .

Proof. The equations of a line and a circle on the plane are

$$
\begin{aligned}
& a x+b y=c \\
& (x-d)^{2}+(y-e)^{2}=r^{2}
\end{aligned}
$$

in general. If these are drawn in terms of points in P_{m}, then a, b, c, d, e, r^{2} can be choosen from K_{n} for some n. Each coordinate of an upcoming point is a root u of a quadratic equation over K_{n}. If $u \in K_{n}$, then $\left[K_{n+1}: K_{n}\right]=1$. If $u \notin K_{n}$, then $\left[K_{n+1}: K_{n}\right]=2$.

- Corollary 4.1.2 : $\left[K_{n}: \mathbb{Q}\right]=2^{m}$ for some $m \leq n$.

4.3 Three Problems in Greek Age

- Squaring the Circle : Construct a aquare with the same area as a given circle.

Proof. Impossible because π is transcendental!

- Dubling the Cube : Construct a side of a cube that has twice the volume of a cube with a given side.

Proof. Impossible because $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$.

- Trisecting the Angle : construct an angle that is one-third of a given arbitrary angle.

Proof. Will see impossible for $2 \pi / 3$!

4.4 Homework

1. Is it always possible to construct $\alpha \in \mathbb{R}$ if $[\mathbb{Q}(\alpha): \mathbb{Q}]=2^{n}$ where $n \geq 2$?
2. Show that the equilateral n-gon can be constructed if and only if $\varphi(n)=2^{k}$ for some $k \geq 1$, and if and only if $n=2^{m} p_{1} p_{2} \cdots p_{k}$ so that each p_{i} is a distinct prime of the form $2^{2^{s}}+1$ (called Fermat prime).
3. Construct the regular pentagon.
4. Contsruct the regular 17-gon.
5. Is it possible to construct a square from a triangle with the same area ?
6. Find an angle for which the construction of trisector is possible with respect to the initial set $P_{1}=\{(0,0),(1,0)\}$.
