Thus,
1
@ =vp = — [(1 — ap) ok + arpyy — onf' (Yy)]
Yk+1

is the minimal optimal solution of ¢y ().
Finally, from what we proved so far and from the definition

orr1(Yr) = Opr + 5 lyr — virall3
(1 — ar)on(yr) + arf(yz) (13)
= (1—ar) (o5 + Fllyr — vrl3) + anf(yp)-
Now,
1
V1 —Yp = — [(1— a)ye(vr — yp) — anf'(yp)] -

Ye+1

Therefore,
P lon - willl = gy (- an)* Rk — wel3 + o1 () 3 14)
=20 (1 = ar) v (f' (Yr), v — Y] -

Substituting (14) into (13), we obtain the expression for ¢j_ ;. I

Theorem 9.5 Let L > p > 0. Consider f € Si’}lL(]R"), possible with ¢ = 0 (which means that

fe FIL’I(R")). For given xg, vy € R", let us choose ¢§ = f(xo). Consider also 79 > 0 such that

L =2~ = p =2 0. Define the sequences {a}32 1, {}iZo, {yn}ilo, {@etilo {vi}ilo, {05170
and {¢p(x)}32,, as follows:

a_1 = O,
a € (0,1] root of Lad = (1 — o)y + Qnft := Vo1,
OVEVE + Ve+1Tk
Vet ogp

. 1
2, is such that f(znn) < Flu) — 521 )l

Ye =

1
vipr = ——[(1 = ap) ok + oy — anf (yi ),
V41
* * a% ! 2
Pri1 = (1 —ar)oyp + arf(yr) — 5 I (yi) Iz
V41
(1 — o)y (1
+ (Bl — a3+ (i) ok — wi) )
V41
Ve+1
Or1(®) = dpp1 + - llz - Vg3
k—1
Then, we satisfy all the conditions of Lemma 9.2 for the \; = H (1 — ).
i=—1

Proof:
In fact, due to Lemmas 9.3 and 9.4, it just remains to show that oy € (0,1] for (k =0,1,...)

o
such that Z aj = 00. In the special case of = 0, we must show that o, <1 (k=0,1,...). And

k=
finally that ;(mk) < ¢;.
Let us show both using induction hypothesis.
Consider the quadratic equation in «, go(a) := La? + (y0 — p)a — 70 = 0. Notice that its
discriminant A := (g — pu)? + 4L is always positive by the hypothesis. Also, qo(0) = —70 < 0,
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but due to the hypothesis again. Therefore, this equation always has a root ag > 0. Since go(1) =
L—pu>0, ap <1, and we have ag € (0,1]. If 4 =0, and g = 1, we will have L = 0 which implies
~vo = 0 which contradicts our hypothesis. Then «g < 1. In addition, 71 := (1 — ap)vyo + i > 0 and
Y0 + aop > 0. The same arguments are valid for any k. Therefore, o, € (0,1], and o <1 (k =
0,1,...,)if u=0.

Finally, La2 = (1 — ag)yk + o > (1 — ag)p+ agp = p. And we have oy, > , and therefore,

Z ap = 00, if > 0. For the case y = 0, the argument is the same as the proof of Theorem 9.6.
k=0

Now, suppose that for k£ = 0, f(xg) < ¢;. Suppose that the induction hypothesis is valid for
any index equal or smaller than k. Due to the previous lemma,

Gir = (L= oo +onf(yy) - ()1
ag(l —ap)yk (p /
L (§Hyk — o135+ (' (yp)s vk — yk>>

> (1 —ag)f(zr) +anflyg) — ()3

ag(l — o)y (1
+ R (Ll — well3 + (F (i) vn — i) -
Ye+1

Now, since f(x) is convex, f(xx) > f(yi) + (f'(yr), Tk — yi), and we have:

2
X a Yk ap(l — ag)yep
Gri1 = Fye)— 1 (w)lI3+ 1 —an) (f (yp), (Ve—Yp)+Tr—Yp)+— |y —vi[3-
2V 41 V41 2Yk+1

Recall that since f’ is L-Lipschitz continuous, if we apply Lemma 3.4 to y,, and @11 = y;— %f’(yk),
we obtain

Fl) — 57 17 @I > Flann)

Therefore, if we impose
ALYk
Ye+1

it justifies our choice for y;. And putting

(vk —yp)+xp —yp, =0

2
o, 1

2’7k+1 2L

it justifies our choice for ay. Since w > 0, we finally obtain ¢; | > f(xx11) as wished.

The above theorem suggests an algorithm to minimize f € S ( ™.
Notice that in the following optimal gradient method, we don t need the estimated sequence
anymore.

General Scheme for the Optimal Gradient Method
Step 0: Choose xy € R", let 79 > 0 such that L > ~v9 > pu > 0.
Set vy := xg and k := 0.
Step 1: Compute oy, € (0,1] from the equation Lai = (1 — ag)yk + agp.
Step 2:  Set g1 = (1 — o) vk + pt, Yy, == W
Step 3: Compute f(y;) and f'(y;).
Step 4: Find @, such that f(xr11) < f(y;) — 1L||f’(yk)||% using “line search”.

Step 5: Set vpiq: = = a’“)%vﬁxﬁy’“ oS (Yu) , k:=k+1 and go to Step 1.
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Theorem 9.6 Consider f € SL’IL(R”), possible with y = 0 (which means that f € flL’l(R”)). The
general scheme of the optimal gradient method generates a sequence {xj}7°, such that

f@n) = F@) < [ f(@o) + Tl — zoll3 — f(@")]

k—1
where a_1 =0 and A\, = H (1 — o). Moreover,
i=—1

Ak Smin{<1— \/E>k, (Q\Eil;cm)?}'

In other words, the sequence {f(xy) — f(x*)}32, converges R-sublinearly to zero if p = 0 and
R-linearly to zero if p > 0.

Proof:
The first part is obvious from the definition and Lemma 9.2.

We already know that oy, > \/% (k=0,1,...), therefore,

k-1 k-1 k
)\k—H(l—Oﬁ)—H(l—Ozi)§<l— Z) s

i=—1 =0

which only has a meaning if ;1 > 0. For the case p = 0, let us prove first that v, = y9Ax. Obviously
Yo = YoAo, and assuming the induction hypothesis,

Y1 = (1 = ap)ve + app = (1 — ag) v = (1 — ar)vo e = YoAket1-

Therefore, Laz = Vip+1 = YoAg+1- Since Ny is a decreasing sequence

I \K—\/m_ Ak — Akl
VN Y% Ve V% (VA V)
Ak — Akg1 MM A — (M —ar)hk
VX et (VA + VAR 20y At 2/ M1
Qg L /v

2/ Xer1 2V L7

1 kv
o >142 0
VTR A V)

and we have the result. I

Thus

Theorem 9.7 Consider f € Si’lL(R”), possible with ¢ = 0 (which means that f € .FIL’I(R”)). If
we take 9 = L, the general scheme of the “optimal” gradient method generates a sequence {xj}°

such that N
4
flzg) — f(x") SLmin{(l—\/E) ,M}Hwo—az*\\%.

This means that it is “optimal” for the class of functions from SilL(R”) with > 0, or F lL’l(R”).
In the particular case of u > 0, we have the following inequality for k sufficiently large:

k
. 2L Jz X
|l — 2|3 < m (1— L) w0 — =73-

That means that the sequence {[|z) — x*||2}32, converges Q-lineary to zero.
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