e Note that the previous result for the steepest descent method, Theorem 5.12; was only a local
result. Theorems 8.1 and 8.3 guarantee that the steepest descent method converges for any
starting point &g € R"™.

e Comparing the rate of convergence of the steepest descent method for the classes F 1L’1(]R")
and SilL(R") (Theorems 8.1, Corollary 8.2, and 8.3, respectively) with their lower complexity

bounds (Theorems 7.1 and 7.2, respectively), we possible have a huge gap.
8.1 Exercises

1. Prove Corollary 8.2.

9 The Optimal Gradient Method (First-Order Method, Acceler-
ated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov? in 1983. In [Nesterov03], he gives a
reinterpretation of the algorithm and provides another justification of it which attains the same
complexity bound of the original article.

Definition 9.1 A pair of sequences {¢(x)}72, and {A\}32, with A\ > 0 is called an estimate
sequence of the function f(x) if
A — 0,

and for any & € R" and any k > 0, we have
or(x) < (1= ) f(x) + Augo(@).

Lemma 9.2 Given an estimate sequence {¢x(x)}72, {A\}52,, and if for some sequence {x1}7,
we have

Flax) < gt = min o)

then f(xy) — f(x*) < Ag(po(x*) — f(x*)) — 0.

Proof:
It follows from the definition. 1

Lemma 9.3 Assume that
1. fe Si(R”), possible with y = 0 (which means that f € F1(R")).
2. ¢o(x) is an arbitrary function on R".

3. {yr}i, is an arbitrary sequence in R".

o0
4. {og}32 _, is an arbitrary sequence such that a_; =0, ay, € (0,1] (k=0,1,...), and Z o =
k=0

0.
k-1 e
Then the pair of sequences { H (1-— ai)} and {¢r(x)};2, recursively defined as
=-1 k=0
i@ = (1= an)on(@) +ai | Fi) + (F (i) @ — i) + Sz =yl

is an estimate sequence.

3Y. Nesterov, “A method for solving the convex programming problem with convergence rate o(1/ kz),” Dokl.
Akad. Nauk SSSR 269 (1983), pp. 543-547.
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Proof:

Let us prove by induction on k. For k =0, ¢o(x) = (1 — (1 — a_1)) f(x) + (1 — a_1)po(x) since
a_1 = 0. Suppose that the induction hypothesis is valid for any index equal or smaller than k.
Since f € Sh(R”),

@) = (1- > o(@) +an [ i) + (i) @ = ye) + Sl =yl

< (1 —ar)or(x) + o f(x)
k 1 k—1

= <1 —(1-a) JJ - ozz-)) f() + (1 —ag) (fbk(ﬂc) - <1 - H (1- ai)) f(m)>
Zk__l k—1 o

< (1 —(1—ayg) (1 — ai)> flx)+ (1 — ag) H (1 — @i)go(z)
i=—1 i=—1

- (1_H(1—az> +H 1 — ai)do(x

i=—1 i=—1
The remaining part is left for exercise. I

Lemma 9.4 Let f : R" — R be an arbitrary continuously differentiable function. Also let ¢ € R,
p>0,7% >0, vy € R, {y,}72,, and {a}2, given arbitrarily sequences such that a_; = 0,
ar € (0,1] (k= 0,1,...). In the special case of p = 0, we further assume that ¢ > 0 and
ar <1 (k=0,1,...). Let ¢o(x) = ¢} + 2|l — vo||3. If we define recursively ¢r1(x) such as the
previous lemma:

bri1(@) = (1= a)én(@) +ax [ Flyp) + (F (wp),@ — i) + Slle — wil3]

then ¢p11(x) preserve the canonical form

V41
bry1(x) = dppq + 2+ & — v 3 (12)
for
Yerr = (1 —ap)me + arp,
1
Vpp1 = — (1 — o) vr + appyy, — akf/(yk)]a
Vk+1
Grp1 = (1—o)dj +onfyy) — "(yi)l3
op(l —ap)ye (1
OO (B 2 4 ).k — )
V41
Proof:

We will use again the induction hypothesis in k. Note that ¢f(x) = v0I. Now, for any k > 0,

Gpr1(x) = (1 — o)y () + appud = (1 — o) yi + app) I = v I

Therefore, ¢ry1(x) is a quadratic function of the form (12). Also, yx4+1 > 0 since g > 0 and
ar >0 (k=0,1,...); orif 4 = 0, we assumed that 79 > 0 and o, € (0,1) (k=0,1,...).
From the first-order optimality condition

Ger1(®) = (1= an)dp(®) + anf (yp) + awp(z — yy)
(1 — ag)ve(® — vi) + apf'(yg) + agp(z — y;) = 0.
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