
• Note that the previous result for the steepest descent method, Theorem 5.12, was only a local
result. Theorems 8.1 and 8.3 guarantee that the steepest descent method converges for any
starting point x0 ∈ Rn.

• Comparing the rate of convergence of the steepest descent method for the classes F1,1
L (Rn)

and S1,1
µ,L(R

n) (Theorems 8.1, Corollary 8.2, and 8.3, respectively) with their lower complexity
bounds (Theorems 7.1 and 7.2, respectively), we possible have a huge gap.

8.1 Exercises

1. Prove Corollary 8.2.

9 The Optimal Gradient Method (First-Order Method, Acceler-
ated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov3 in 1983. In [Nesterov03], he gives a
reinterpretation of the algorithm and provides another justification of it which attains the same
complexity bound of the original article.

Definition 9.1 A pair of sequences {ϕk(x)}∞k=0 and {λk}∞k=0 with λk ≥ 0 is called an estimate
sequence of the function f(x) if

λk → 0,

and for any x ∈ Rn and any k ≥ 0, we have

ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x).

Lemma 9.2 Given an estimate sequence {ϕk(x)}∞k=0, {λk}∞k=0, and if for some sequence {xk}∞k=0

we have
f(xk) ≤ ϕ∗

k := min
x∈Rn

ϕk(x)

then f(xk)− f(x∗) ≤ λk(ϕ0(x
∗)− f(x∗)) → 0.

Proof:
It follows from the definition.

Lemma 9.3 Assume that

1. f ∈ S1
µ(Rn), possible with µ = 0 (which means that f ∈ F1(Rn)).

2. ϕ0(x) is an arbitrary function on Rn.

3. {yk}∞k=0 is an arbitrary sequence in Rn.

4. {αk}∞k=−1 is an arbitrary sequence such that α−1 = 0, αk ∈ (0, 1] (k = 0, 1, . . .), and
∞∑
k=0

αk =

∞.

Then the pair of sequences

{
k−1∏
i=−1

(1− αi)

}∞

k=0

and {ϕk(x)}∞k=0 recursively defined as

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨f ′(yk),x− yk⟩+

µ

2
∥x− yk∥22

]
is an estimate sequence.

3Y. Nesterov, “A method for solving the convex programming problem with convergence rate O(1/k2),” Dokl.
Akad. Nauk SSSR 269 (1983), pp. 543–547.

35



Proof:
Let us prove by induction on k. For k = 0, ϕ0(x) = (1− (1− α−1)) f(x)+ (1−α−1)ϕ0(x) since

α−1 = 0. Suppose that the induction hypothesis is valid for any index equal or smaller than k.
Since f ∈ S1

µ(Rn),

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨f ′(yk),x− yk⟩+

µ

2
∥x− yk∥22

]
≤ (1− αk)ϕk(x) + αkf(x)

=

(
1− (1− αk)

k−1∏
i=−1

(1− αi)

)
f(x) + (1− αk)

(
ϕk(x)−

(
1−

k−1∏
i=−1

(1− αi)

)
f(x)

)

≤

(
1− (1− αk)

k−1∏
i=−1

(1− αi)

)
f(x) + (1− αk)

k−1∏
i=−1

(1− αi)ϕ0(x)

=

(
1−

k∏
i=−1

(1− αi)

)
f(x) +

k∏
i=−1

(1− αi)ϕ0(x).

The remaining part is left for exercise.

Lemma 9.4 Let f : Rn → R be an arbitrary continuously differentiable function. Also let ϕ∗
0 ∈ R,

µ ≥ 0, γ0 ≥ 0, v0 ∈ Rn, {yk}∞k=0, and {αk}∞k=0 given arbitrarily sequences such that α−1 = 0,
αk ∈ (0, 1] (k = 0, 1, . . .). In the special case of µ = 0, we further assume that γ0 > 0 and
αk < 1 (k = 0, 1, . . .). Let ϕ0(x) = ϕ∗

0 +
γ0
2 ∥x− v0∥22. If we define recursively ϕk+1(x) such as the

previous lemma:

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨f ′(yk),x− yk⟩+

µ

2
∥x− yk∥22

]
,

then ϕk+1(x) preserve the canonical form

ϕk+1(x) = ϕ∗
k+1 +

γk+1

2
∥x− vk+1∥22 (12)

for

γk+1 = (1− αk)γk + αkµ,

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αkf

′(yk)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1
∥f ′(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨f ′(yk),vk − yk⟩

)
.

Proof:
We will use again the induction hypothesis in k. Note that ϕ′′

0(x) = γ0I. Now, for any k ≥ 0,

ϕ′′
k+1(x) = (1− αk)ϕ

′′
k(x) + αkµI = ((1− αk)γk + αkµ) I = γk+1I.

Therefore, ϕk+1(x) is a quadratic function of the form (12). Also, γk+1 > 0 since µ > 0 and
αk > 0 (k = 0, 1, . . .); or if µ = 0, we assumed that γ0 > 0 and αk ∈ (0, 1) (k = 0, 1, . . .).

From the first-order optimality condition

ϕ′
k+1(x) = (1− αk)ϕ

′
k(x) + αkf

′(yk) + αkµ(x− yk)

= (1− αk)γk(x− vk) + αkf
′(yk) + αkµ(x− yk) = 0.
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