- Note that the previous result for the steepest descent method, Theorem 5.12, was only a local result. Theorems 8.1 and 8.3 guarantee that the steepest descent method converges for any starting point $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$.
- Comparing the rate of convergence of the steepest descent method for the classes $\mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$ and $\mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$ (Theorems 8.1, Corollary 8.2, and 8.3, respectively) with their lower complexity bounds (Theorems 7.1 and 7.2 , respectively), we possible have a huge gap.

8.1 Exercises

1. Prove Corollary 8.2.

9 The Optimal Gradient Method (First-Order Method, Accelerated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov ${ }^{3}$ in 1983. In [Nesterov03], he gives a reinterpretation of the algorithm and provides another justification of it which attains the same complexity bound of the original article.

Definition 9.1 A pair of sequences $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ and $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ with $\lambda_{k} \geq 0$ is called an estimate sequence of the function $f(\boldsymbol{x})$ if

$$
\lambda_{k} \rightarrow 0,
$$

and for any $\boldsymbol{x} \in \mathbb{R}^{n}$ and any $k \geq 0$, we have

$$
\phi_{k}(\boldsymbol{x}) \leq\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x}) .
$$

Lemma 9.2 Given an estimate sequence $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty},\left\{\lambda_{k}\right\}_{k=0}^{\infty}$, and if for some sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ we have

$$
f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*}:=\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \phi_{k}(\boldsymbol{x})
$$

then $f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \lambda_{k}\left(\phi_{0}\left(\boldsymbol{x}^{*}\right)-f\left(\boldsymbol{x}^{*}\right)\right) \rightarrow 0$.
Proof:
It follows from the definition.
Lemma 9.3 Assume that

1. $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}^{1}\left(\mathbb{R}^{n}\right)$).
2. $\phi_{0}(\boldsymbol{x})$ is an arbitrary function on \mathbb{R}^{n}.
3. $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ is an arbitrary sequence in \mathbb{R}^{n}.
4. $\left\{\alpha_{k}\right\}_{k=-1}^{\infty}$ is an arbitrary sequence such that $\alpha_{-1}=0, \alpha_{k} \in(0,1] \quad(k=0,1, \ldots)$, and $\sum_{k=0}^{\infty} \alpha_{k}=$ ∞.
Then the pair of sequences $\left\{\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right\}_{k=0}^{\infty}$ and $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ recursively defined as

$$
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right]
$$

is an estimate sequence.

[^0]
Proof:

Let us prove by induction on k. For $k=0, \phi_{0}(\boldsymbol{x})=\left(1-\left(1-\alpha_{-1}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{-1}\right) \phi_{0}(\boldsymbol{x})$ since $\alpha_{-1}=0$. Suppose that the induction hypothesis is valid for any index equal or smaller than k. Since $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right] \\
& \leq\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k} f(\boldsymbol{x}) \\
& =\left(1-\left(1-\alpha_{k}\right) \prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{k}\right)\left(\phi_{k}(\boldsymbol{x})-\left(1-\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})\right) \\
& \leq\left(1-\left(1-\alpha_{k}\right) \prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{k}\right) \prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right) \phi_{0}(\boldsymbol{x}) \\
& =\left(1-\prod_{i=-1}^{k}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\prod_{i=-1}^{k}\left(1-\alpha_{i}\right) \phi_{0}(\boldsymbol{x}) .
\end{aligned}
$$

The remaining part is left for exercise.
Lemma 9.4 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an arbitrary continuously differentiable function. Also let $\phi_{0}^{*} \in \mathbb{R}$, $\mu \geq 0, \gamma_{0} \geq 0, \boldsymbol{v}_{0} \in \mathbb{R}^{n},\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$, and $\left\{\alpha_{k}\right\}_{k=0}^{\infty}$ given arbitrarily sequences such that $\alpha_{-1}=0$, $\alpha_{k} \in(0,1] \quad(k=0,1, \ldots)$. In the special case of $\mu=0$, we further assume that $\gamma_{0}>0$ and $\alpha_{k}<1 \quad(k=0,1, \ldots)$. Let $\phi_{0}(\boldsymbol{x})=\phi_{0}^{*}+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{0}\right\|_{2}^{2}$. If we define recursively $\phi_{k+1}(\boldsymbol{x})$ such as the previous lemma:

$$
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right],
$$

then $\phi_{k+1}(\boldsymbol{x})$ preserve the canonical form

$$
\begin{equation*}
\phi_{k+1}(\boldsymbol{x})=\phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k+1}\right\|_{2}^{2} \tag{12}
\end{equation*}
$$

for

$$
\begin{aligned}
\gamma_{k+1}= & \left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{v}_{k+1}= & \frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)\right] \\
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right)
\end{aligned}
$$

Proof:
We will use again the induction hypothesis in k. Note that $\phi_{0}^{\prime \prime}(\boldsymbol{x})=\gamma_{0} \boldsymbol{I}$. Now, for any $k \geq 0$,

$$
\phi_{k+1}^{\prime \prime}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}^{\prime \prime}(\boldsymbol{x})+\alpha_{k} \mu \boldsymbol{I}=\left(\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu\right) \boldsymbol{I}=\gamma_{k+1} \boldsymbol{I} .
$$

Therefore, $\phi_{k+1}(\boldsymbol{x})$ is a quadratic function of the form (12). Also, $\gamma_{k+1}>0$ since $\mu>0$ and $\alpha_{k}>0 \quad(k=0,1, \ldots)$; or if $\mu=0$, we assumed that $\gamma_{0}>0$ and $\alpha_{k} \in(0,1) \quad(k=0,1, \ldots)$.

From the first-order optimality condition

$$
\begin{aligned}
\phi_{k+1}^{\prime}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}^{\prime}(\boldsymbol{x})+\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} \mu\left(\boldsymbol{x}-\boldsymbol{y}_{k}\right) \\
& =\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{x}-\boldsymbol{v}_{k}\right)+\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} \mu\left(\boldsymbol{x}-\boldsymbol{y}_{k}\right)=0 .
\end{aligned}
$$

[^0]: ${ }^{3}$ Y. Nesterov, "A method for solving the convex programming problem with convergence rate $\mathcal{O}\left(1 / k^{2}\right)$," Dokl. Akad. Nauk SSSR 269 (1983), pp. 543-547.

