
2. ⟨f ′(x)− f ′(y),x− y⟩ ≤ 1
µ∥f

′(x)− f ′(y)∥22, ∀x,y ∈ Rn.

Proof:
Let us fix x ∈ Rn, and define the function ϕ(y) = f(y)− ⟨f ′(x),y⟩. Clearly, ϕ ∈ S1

µ(Rn). Also,
one minimal solution is x. Therefore,

ϕ(x) = min
v∈Rn

ϕ(v) ≥ min
v∈Rn

[
ϕ(y) + ⟨ϕ′(y),v − y⟩+ µ

2
∥v − y∥22

]
= ϕ(y)− 1

2µ
∥ϕ′(y)∥22

as wished. Adding two copies of the 1 with x and y interchanged, we get 2.

The converse of Theorem 6.18 is not valid. For instance, consider f(x1, x2) = x21 − x22, µ = 1.
Then the inequalities 1. and 2. are satisfied but f /∈ S1

µ(R2) for any µ > 0.

Theorem 6.19 Let f be a twice continuously differentiable function. Then f ∈ S2
µ(Rn) if and only

if
f ′′(x) ⪰ µI, ∀x ∈ Rn.

Proof:
Left for exercise.

Corollary 6.20 Let f be a twice continuously differentiable function. Then f ∈ S2,1
µ,L(R

n) if and
only if

LI ⪰ f ′′(x) ⪰ µI, ∀x ∈ Rn.

Theorem 6.21 If f ∈ S1,1
µ,L(R

n), then

µL

µ+ L
∥x− y∥22 +

1

µ+ L
∥f ′(x)− f ′(y)∥22 ≤ ⟨f ′(x)− f ′(y),x− y⟩, ∀x,y ∈ Rn.

Proof:
If µ = L, from Theorem 6.17 and the definition of C1

µ(Rn),

⟨f ′(x)− f ′(y),x− y⟩ ≥ µ

2
∥x− y∥22 +

µ

2
∥x− y∥22

≥ µ

2
∥x− y∥22 +

1

2µ
∥f ′(x)− f ′(y)∥22,

and the result follows.
If µ < L, let us define ϕ(x) = f(x)− µ

2∥x∥
2
2. Then ϕ′(x) = f ′(x)−µx and ⟨ϕ′(x)−ϕ′(y),x−y⟩ =

⟨f ′(x)−f ′(y),x−y⟩−µ∥x−y∥22 ≤ (L−µ)∥x−y∥22 since f ∈ C1,1
L (Rn). Also ⟨ϕ′(x)−ϕ′(y),x−y⟩ ≥

µ∥x− y∥22 − µ∥x− y∥22 = 0 due to Theorem 6.17. Therefore, from Theorem 6.13, ϕ ∈ F1,1
L−µ(R

n).

We have now ⟨ϕ′(x)− ϕ′(y),x− y⟩ ≥ 1
L−µ∥ϕ

′(x)− ϕ′(y)∥22 from Theorem 6.13. Therefore

⟨f ′(x)− f ′(y),x− y⟩ ≥ µ∥x− y∥22 +
1

L− µ
∥f ′(x)− f ′(y)− µ(x− y)∥22

= µ∥x− y∥22 +
1

L− µ
∥f ′(x)− f ′(y)∥22 −

2µ

L− µ
⟨f ′(x)− f ′(y),x− y⟩

+
µ2

L− µ
∥x− y∥22,

and the result follows after some simplifications.
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6.5 Exercises

1. Given a convex set S ⊆ Rn and an arbitrarily norm ∥ · ∥ in Rn, define the distance of a point
x ∈ Rn to the set S as

dist(x, S) := inf
y∈S

∥x− y∥.

Show that the distance function dist(x, S) is convex in x.

2. Prove Theorem 6.4.

3. Prove Theorem 6.8.

4. Prove Lemma 6.9.

5. Prove Theorem 6.7.

6. Prove Corollary 6.16.

7. Prove Theorem 6.17.

8. Prove Theorem 6.19.

7 Worse Case Analysis for Gradient Based Methods

7.1 Lower Complexity Bound for the class F∞,1
L (Rn)

Gradient Based Method: Iterative method M generated by a sequence such that

xk ∈ x0 + Lin{f ′(x0), f
′(x1), . . . , f

′(xk−1)}, k ≥ 1.

Consider the problem class as follows

Model:

min
x∈Rn

f(x)

f ∈ F1,1
L (Rn)

Oracle: Only function and gradient values are available
Approximate solution: Find x̄ ∈ Rn such that f(x̄)− f(x∗) < ε

Theorem 7.1 For any 1 ≤ k ≤ n−1
2 , and any x0 ∈ Rn, there exists a function f ∈ F∞,1

L (Rn) such
that for any gradient based method of type M, we have

f(xk)− f∗ ≥ 3L∥x0 − x∗∥22
32(k + 1)2

,

∥xk − x∗∥22 ≥ 1

8
∥x0 − x∗∥22,

where x∗ is the minimum of f(x) and f∗ := f(x∗).

Proof:
This type of methods are invariant with respect to a simultaneous shift of all objects in the

space of variables. Therefore, we can assume that x0 = 0.
Consider the family of quadratic functions

fk(x) =
L

4

{
1

2

[
[x]21 +

k−1∑
i=1

([x]i − [x]i+1)
2 + [x]2k

]
− [x]1

}
, k = 1, 2, . . . ,

⌊
n− 1

2

⌋
.
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