2.
$$\langle f'(\boldsymbol{x}) - f'(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \leq \frac{1}{\mu} \| f'(\boldsymbol{x}) - f'(\boldsymbol{y}) \|_2^2, \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$$

Proof:

Let us fix $\boldsymbol{x} \in \mathbb{R}^n$, and define the function $\phi(\boldsymbol{y}) = f(\boldsymbol{y}) - \langle f'(\boldsymbol{x}), \boldsymbol{y} \rangle$. Clearly, $\phi \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$. Also, one minimal solution is \boldsymbol{x} . Therefore,

$$egin{aligned} \phi(oldsymbol{x}) &= & \min_{oldsymbol{v}\in\mathbb{R}^n} \phi(oldsymbol{v}) \geq & \min_{oldsymbol{v}\in\mathbb{R}^n} \left[\phi(oldsymbol{y}) + \langle \phi'(oldsymbol{y}), oldsymbol{v} - oldsymbol{y}
ight|_2^2 \ &= & \phi(oldsymbol{y}) - rac{1}{2\mu} \| \phi'(oldsymbol{y}) \|_2^2 \end{aligned}$$

as wished. Adding two copies of the 1 with \boldsymbol{x} and \boldsymbol{y} interchanged, we get 2.

The converse of Theorem 6.18 is not valid. For instance, consider $f(x_1, x_2) = x_1^2 - x_2^2$, $\mu = 1$. Then the inequalities 1. and 2. are satisfied but $f \notin S^1_{\mu}(\mathbb{R}^2)$ for any $\mu > 0$.

Theorem 6.19 Let f be a twice continuously differentiable function. Then $f \in S^2_{\mu}(\mathbb{R}^n)$ if and only if

$$f''(\boldsymbol{x}) \succeq \mu \boldsymbol{I}, \quad \forall \boldsymbol{x} \in \mathbb{R}^n.$$

Proof: Left for exercise.

Corollary 6.20 Let f be a twice continuously differentiable function. Then $f \in \mathcal{S}^{2,1}_{\mu,L}(\mathbb{R}^n)$ if and only if

$$L\mathbf{I} \succeq f''(\mathbf{x}) \succeq \mu \mathbf{I}, \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

Theorem 6.21 If $f \in \mathcal{S}^{1,1}_{\mu,L}(\mathbb{R}^n)$, then

$$\frac{\mu L}{\mu+L} \|\boldsymbol{x}-\boldsymbol{y}\|_2^2 + \frac{1}{\mu+L} \|f'(\boldsymbol{x}) - f'(\boldsymbol{y})\|_2^2 \leq \langle f'(\boldsymbol{x}) - f'(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y} \rangle, \; \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$$

Proof:

If $\mu = L$, from Theorem 6.17 and the definition of $\mathcal{C}^1_{\mu}(\mathbb{R}^n)$,

$$egin{aligned} \langle f'(m{x}) - f'(m{y}), m{x} - m{y}
angle & \geq & rac{\mu}{2} \|m{x} - m{y}\|_2^2 + rac{\mu}{2} \|m{x} - m{y}\|_2^2 \ & \geq & rac{\mu}{2} \|m{x} - m{y}\|_2^2 + rac{1}{2\mu} \|f'(m{x}) - f'(m{y})\|_2^2. \end{aligned}$$

and the result follows.

If $\mu < L$, let us define $\phi(\boldsymbol{x}) = f(\boldsymbol{x}) - \frac{\mu}{2} \|\boldsymbol{x}\|_2^2$. Then $\phi'(\boldsymbol{x}) = f'(\boldsymbol{x}) - \mu \boldsymbol{x}$ and $\langle \phi'(\boldsymbol{x}) - \phi'(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle = \langle f'(\boldsymbol{x}) - f'(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle - \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 \leq (L - \mu) \|\boldsymbol{x} - \boldsymbol{y}\|_2^2$ since $f \in \mathcal{C}_L^{1,1}(\mathbb{R}^n)$. Also $\langle \phi'(\boldsymbol{x}) - \phi'(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \geq \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 - \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 = 0$ due to Theorem 6.17. Therefore, from Theorem 6.13, $\phi \in \mathcal{F}_{L-\mu}^{1,1}(\mathbb{R}^n)$. We have now $\langle \phi'(\boldsymbol{x}) - \phi'(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \geq \frac{1}{L-\mu} \|\phi'(\boldsymbol{x}) - \phi'(\boldsymbol{y})\|_2^2$ from Theorem 6.13. Therefore

$$\begin{split} \langle f'(\bm{x}) - f'(\bm{y}), \bm{x} - \bm{y} \rangle &\geq \mu \|\bm{x} - \bm{y}\|_2^2 + \frac{1}{L - \mu} \|f'(\bm{x}) - f'(\bm{y}) - \mu(\bm{x} - \bm{y})\|_2^2 \\ &= \mu \|\bm{x} - \bm{y}\|_2^2 + \frac{1}{L - \mu} \|f'(\bm{x}) - f'(\bm{y})\|_2^2 - \frac{2\mu}{L - \mu} \langle f'(\bm{x}) - f'(\bm{y}), \bm{x} - \bm{y} \rangle \\ &+ \frac{\mu^2}{L - \mu} \|\bm{x} - \bm{y}\|_2^2, \end{split}$$

and the result follows after some simplifications.

6.5 Exercises

1. Given a convex set $S \subseteq \mathbb{R}^n$ and an arbitrarily norm $\|\cdot\|$ in \mathbb{R}^n , define the distance of a point $\boldsymbol{x} \in \mathbb{R}^n$ to the set S as

$$\operatorname{dist}(\boldsymbol{x}, S) := \inf_{\boldsymbol{y} \in S} \|\boldsymbol{x} - \boldsymbol{y}\|.$$

Show that the distance function dist(x, S) is convex in x.

- 2. Prove Theorem 6.4.
- 3. Prove Theorem 6.8.
- 4. Prove Lemma 6.9.
- 5. Prove Theorem 6.7.
- 6. Prove Corollary 6.16.
- 7. Prove Theorem 6.17.
- 8. Prove Theorem 6.19.

7 Worse Case Analysis for Gradient Based Methods

7.1 Lower Complexity Bound for the class $\mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$

Gradient Based Method: Iterative method \mathcal{M} generated by a sequence such that

$$x_k \in x_0 + \operatorname{Lin}\{f'(x_0), f'(x_1), \dots, f'(x_{k-1})\}, k \ge 1.$$

Consider the problem class as follows

Model:	$\min_{oldsymbol{x} \in \mathbb{R}^n} f(oldsymbol{x})$
	$f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$
Oracle:	Only function and gradient values are available
Approximate solution:	Find $\bar{\boldsymbol{x}} \in \mathbb{R}^n$ such that $f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) < \varepsilon$

Theorem 7.1 For any $1 \le k \le \frac{n-1}{2}$, and any $\boldsymbol{x}_0 \in \mathbb{R}^n$, there exists a function $f \in \mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$ such that for any gradient based method of type \mathcal{M} , we have

$$egin{array}{rcl} f(m{x}_k)-f^*&\geq&rac{3L\|m{x}_0-m{x}^*\|_2^2}{32(k+1)^2},\ \|m{x}_k-m{x}^*\|_2^2&\geq&rac{1}{8}\|m{x}_0-m{x}^*\|_2^2, \end{array}$$

where \boldsymbol{x}^* is the minimum of $f(\boldsymbol{x})$ and $f^* := f(\boldsymbol{x}^*)$.

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the space of variables. Therefore, we can assume that $x_0 = 0$.

Consider the family of quadratic functions

$$f_k(\boldsymbol{x}) = \frac{L}{4} \left\{ \frac{1}{2} \left[[\boldsymbol{x}]_1^2 + \sum_{i=1}^{k-1} ([\boldsymbol{x}]_i - [\boldsymbol{x}]_{i+1})^2 + [\boldsymbol{x}]_k^2 \right] - [\boldsymbol{x}]_1 \right\}, \quad k = 1, 2, \dots, \left\lfloor \frac{n-1}{2} \right\rfloor.$$