5.4 The Newton Method
Example 5.13 Let us apply the Newton method to find the root of the following function

t
t) = .
=ire
Clearly t* = 0.
The Newton method will give:
o(tk)

lpt1 =t — & (t) =ty — ti(1 +t3) = —t}.

Therefore, the method converges if |to| < 1, it oscillates if |tg| = 1, and finally, diverges if |to| > 1.
Assumption 5.14
2,2 .
1. fecCy (R");
2. There is a local minimum x* of the function f(x);
3. The Hessian is positive definite at x*:

f(x*) = eI, £>0;

4. Our starting point x¢ is close enough to x*.

Theorem 5.15 Let the function f(x) satisfy the above assumptions. Suppose that the initial
starting point a( is close enough to x*:

—x¥| < T i= —.
leo —x*|l2 < T Wi

Then ||z — x*||2 < 7 for all k of the Newton method and it converges (Q-)quadratically:

M||zy, — *|3
t = M|z —z*|]2)

*
_ <
|Tr1 — 2|2 < 5

Proof:
Let ry = ||@r — «*||2. From Lemma 3.6 and the assumption, we have for k = 0,

" (xo) = f"(x*) — MroI = (£ — Mro)I. (8)

Since rg < 7 = 32—]@ < ﬁ, we have £ — Mrg > 0 and therefore, f”(x) is invertible.
Consider the Newton method for k = 0, &1 = zo — [f"(x0)] L f/(x0).
Then

z -2t = wo—a" —[f"(z0)] [ (z0)
1
= xyg—x" — [f”(azg)]_l/ f"(x* + 1(xg — x*)) (0 — *)dT
0
= [f"(z0)] "' Go(zo — )

where Go = [y [f" (o) — f"(a* + 7(wo — a*))|dr.
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Then

1
IGoll: = | [ 1" (@0) = £"(&" + (o —=")ir
2
1
< 1" (o) = f"(x" + 7(20 — a"))[|2dT
0
1
< M|1 — 7lrodr = —M
0
From (8),
17" (o)l Hl2 < (€ — M)~
Then
Mrg
<
2(€ — M?"())
Since rg < T = 2—]6[, % <1, and r < rg.
One can see now that the same argument is valid for all k’s. 1

5.5

Comparing this result with the rate of convergence of the steepest descent, we see that the
Newton method is much faster.

Surprisingly, the region of quadratic convergence of the Newton method is almost the same as
the region of the linear convergence of the gradient method.

20 20
leo — ™2 < i (steepest descent method) |lxg — x*||2 < EY Vi (Newton method)

This justifies a standard recommendation to use the steepest descent method only at the
initial stage of the minimization process in order to get close to a local minimum and then
perform the Newton method to refine.

The Conjugate Gradient Methods

The conjugate gradient methods were initially proposed for minimizing convex quadratic functions.
Consider the problem

min f(x)

xecR"

with f(z) = o+ (a,z) + 1(Az,x) and A = O. Since its minimal solution is * = —A~'a, we can
rewrite f(x) as:

fl@) = a—<Ax*,x>+%<Am,x>

= a-— %(Am*,:c*> + %(A(a: —z¥),x —x).

Thus, f* = a — 1(Az*, z*) and f'(z) = A(z — z*).

Definition 5.16 Given a starting point xg, the linear Krylov subspaces is defined as

Ly :=Lin{A(zg — x*),..., A¥(xg — ")}, k>1.
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We claim temporarily that the sequence of points generated by a conjugate gradient method is
defined as follows:

@ = argmin{f(x) | ¢ € o+ L1}, k > 1. ‘

Lemma 5.17 For any k > 1, £, = Lin{f'(zo), ..., f'(xx-1)}

Proof:

Let us prove by induction hypothesis.

For k = 1, the statement is true since f'(xg) = A(xo — x*).

Suppose the claim is true for some & > 1. Then from the definition of the conjugate gradient
method,

k
T = T + Z AZ’Ai(:IZ() — .’13*)

i=1
with some \; € R, ¢=1,..., k. Therefore,
k ' k—1 A
fl@r) = Almwo—z)+Y_ MNAT (o —z*) = A(mo— ")+ Y NA™ (10 — ") + M A (g — ).
i=1 i=1

The first two terms of the last expression belongs to Ly from the definition. And then,
Lin{Ly, f'(@)} C Lin{Ly, A" (@g — %)} = Ly

If the equality does not hold, f'(xj) € L implies A¥*!(zqg — 2*) € Lj, which again implies the
equality, or Ay = 0, which implies that o) = x;_1 (algorithm terminated). 1
Lemma 5.18 For any k,¢ > 0, k # £, we have (f'(xx), f'(z¢)) = 0.

Proof:

Let k£ > 7, and consider

k
N = f @0+ A f (1)
j=1

From the previous lemma, there is a A* such that &y = xo + Z?Zl A;f'(zj-1). Moreover, A™ is the
minimum of the function ¢(X). Therefore,

9¢

)= (f'(zx), f'(@i1)) = 0.

Corollary 5.19 The sequence generated by the conjugate gradient method for the convex quadratic
function is finite.

Proof:
Since the number of orthogonal directions in R™ cannot exceed n. 1

Let us define §; = x; 11 — @;. It is clear that £ = Lin{dop, d1,...,0x_1} (Exercise 5).

Lemma 5.20 For any k,¢ > 0, k # ¢, (Ady,d,) = 0.
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Proof:
Let £ > ¢. Then

(Ady,00) = (A(mpi1 — 1), 00) = (f'(®p11) — f'(®1), ®e31 — ®0) =0,

due to Lemma 5.18. 1

The vectors {d;} are called conjugate with respect to matrix A.
Now, let us be more precise with the conjugate gradient method. We will define the next
iterations as follows:

k—1

Tt = T — hif'(@k) + > Ai6;
=0

Using the previous properties, we arrive that (see Exercise 6)

hill £ () |I3
(f'(xr) = f'(2h-1),0k—1)

A=0, (j=01,....k—2), A=

Thus
where IL£ (2x2) 113
) Tk )|oPr—1
= Xr - '
P f( k:) (f’(xk> — f’(aﬁk71)apk—1>

Finally, we can present the Conjugate Gradient Method

Conjugate Gradient Method
Step 0:  Let &g € R™, compute f(x), f'(zo) and set py := f'(xo), k:=0
Step 1:  Find xgy1 := xx — hgpy, by “approximate line search” on the scalar hy,
Step 2: Compute f(xg+1) and f'(zg41)
Step 3:  Compute the coefficient Bgy1
Step 4:  Set pgy1:= f'(®k+1) — Bk+1Py, k :=k + 1 and go to Step 1

The most popular choices for the coefficient 5 are:

1. Hestenes-Stiefel (1952): Bri1 = <fl(g,’“(;gﬂ)(ffﬁ(g;){;(sk».

2. Fletcher-Reeves (1964): Bri1 = W
2

3. Polak-Ribicre (1969): Byyy = L@l ),
2

4. Polak-Ribicre plus: 41 = max {0, L @esth ey L@
2

 DuiY 1999): 3 _ ILf (k)3
. Dai-Yuan ( ): Br+1 (f(®pq1)—F(Tk),Py)

Among them, Hestenes-Stiefel and Polak-Rebiere are empirically preferred.
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