
5.4 The Newton Method

Example 5.13 Let us apply the Newton method to find the root of the following function

ϕ(t) =
t√

1 + t2
.

Clearly t∗ = 0.
The Newton method will give:

tk+1 = tk −
ϕ(tk)

ϕ′(tk)
= tk − tk(1 + t2k) = −t3k.

Therefore, the method converges if |t0| < 1, it oscillates if |t0| = 1, and finally, diverges if |t0| > 1.

Assumption 5.14

1. f ∈ C2,2
M (Rn);

2. There is a local minimum x∗ of the function f(x);

3. The Hessian is positive definite at x∗:

f ′′(x∗) ⪰ ℓI, ℓ > 0;

4. Our starting point x0 is close enough to x∗.

Theorem 5.15 Let the function f(x) satisfy the above assumptions. Suppose that the initial
starting point x0 is close enough to x∗:

∥x0 − x∗∥2 < r̄ :=
2ℓ

3M
.

Then ∥xk − x∗∥2 < r̄ for all k of the Newton method and it converges (Q-)quadratically:

∥xk+1 − x∗∥2 ≤
M∥xk − x∗∥22

2(ℓ−M∥xk − x∗∥2)
.

Proof:
Let rk = ∥xk − x∗∥2. From Lemma 3.6 and the assumption, we have for k = 0,

f ′′(x0) ⪰ f ′′(x∗)−Mr0I ⪰ (ℓ−Mr0)I. (8)

Since r0 < r̄ = 2ℓ
3M < ℓ

M , we have ℓ−Mr0 > 0 and therefore, f ′′(x0) is invertible.
Consider the Newton method for k = 0, x1 = x0 − [f ′′(x0)]

−1f ′(x0).
Then

x1 − x∗ = x0 − x∗ − [f ′′(x0)]
−1f ′(x0)

= x0 − x∗ − [f ′′(x0)]
−1

∫ 1

0
f ′′(x∗ + τ(x0 − x∗))(x0 − x∗)dτ

= [f ′′(x0)]
−1G0(x0 − x∗)

where G0 =
∫ 1
0 [f

′′(x0)− f ′′(x∗ + τ(x0 − x∗))]dτ .
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Then

∥G0∥2 =

∥∥∥∥∫ 1

0
[f ′′(x0)− f ′′(x∗ + τ(x0 − x∗))]dτ

∥∥∥∥
2

≤
∫ 1

0
∥f ′′(x0)− f ′′(x∗ + τ(x0 − x∗))∥2dτ

≤
∫ 1

0
M |1− τ |r0dτ =

r0
2
M.

From (8),
∥[f ′′(x0)]

−1∥2 ≤ (ℓ−Mr0)
−1.

Then

r1 ≤
Mr20

2(ℓ−Mr0)
.

Since r0 < r̄ = 2ℓ
3M , Mr0

2(ℓ−Mr0)
< 1, and r1 < r0.

One can see now that the same argument is valid for all k’s.

• Comparing this result with the rate of convergence of the steepest descent, we see that the
Newton method is much faster.

• Surprisingly, the region of quadratic convergence of the Newton method is almost the same as
the region of the linear convergence of the gradient method.

∥x0 − x∗∥2 <
2ℓ

M
(steepest descent method) ∥x0 − x∗∥2 <

2ℓ

3M
(Newton method)

• This justifies a standard recommendation to use the steepest descent method only at the
initial stage of the minimization process in order to get close to a local minimum and then
perform the Newton method to refine.

5.5 The Conjugate Gradient Methods

The conjugate gradient methods were initially proposed for minimizing convex quadratic functions.
Consider the problem

min
x∈Rn

f(x)

with f(x) = α+ ⟨a,x⟩+ 1
2⟨Ax,x⟩ and A ≻ O. Since its minimal solution is x∗ = −A−1a, we can

rewrite f(x) as:

f(x) = α− ⟨Ax∗,x⟩+ 1

2
⟨Ax,x⟩

= α− 1

2
⟨Ax∗,x∗⟩+ 1

2
⟨A(x− x∗),x− x∗⟩.

Thus, f∗ = α− 1
2⟨Ax∗,x∗⟩ and f ′(x) = A(x− x∗).

Definition 5.16 Given a starting point x0, the linear Krylov subspaces is defined as

Lk := Lin{A(x0 − x∗), . . . ,Ak(x0 − x∗)}, k ≥ 1.
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We claim temporarily that the sequence of points generated by a conjugate gradient method is
defined as follows:

xk := argmin{f(x) | x ∈ x0 + Lk}, k ≥ 1.

Lemma 5.17 For any k ≥ 1, Lk = Lin{f ′(x0), . . . , f
′(xk−1)}.

Proof:
Let us prove by induction hypothesis.
For k = 1, the statement is true since f ′(x0) = A(x0 − x∗).
Suppose the claim is true for some k ≥ 1. Then from the definition of the conjugate gradient

method,

xk = x0 +
k∑

i=1

λiA
i(x0 − x∗)

with some λi ∈ R, i = 1, . . . , k. Therefore,

f ′(xk) = A(x0−x∗)+

k∑
i=1

λiA
i+1(x0−x∗) = A(x0−x∗)+

k−1∑
i=1

λiA
i+1(x0−x∗)+λkA

k+1(x0−x∗).

The first two terms of the last expression belongs to Lk from the definition. And then,

Lin{Lk, f
′(xk)} ⊆ Lin{Lk,A

k+1(x0 − x∗)} = Lk+1.

If the equality does not hold, f ′(xk) ∈ Lk implies Ak+1(x0 − x∗) ∈ Lk, which again implies the
equality, or λk = 0, which implies that xk = xk−1 (algorithm terminated).

Lemma 5.18 For any k, ℓ ≥ 0, k ̸= ℓ, we have ⟨f ′(xk), f
′(xℓ)⟩ = 0.

Proof:
Let k ≥ i, and consider

ϕ(λ) = f

x0 +

k∑
j=1

λjf
′(xj−1)

 .

From the previous lemma, there is a λ∗ such that xk = x0 +
∑k

j=1 λ
∗
jf

′(xj−1). Moreover, λ∗ is the
minimum of the function ϕ(λ). Therefore,

∂ϕ

∂λi
(λ∗) = ⟨f ′(xk), f

′(xi−1)⟩ = 0.

Corollary 5.19 The sequence generated by the conjugate gradient method for the convex quadratic
function is finite.

Proof:
Since the number of orthogonal directions in Rn cannot exceed n.

Let us define δi = xi+1 − xi. It is clear that Lk = Lin{δ0, δ1, . . . , δk−1} (Exercise 5).

Lemma 5.20 For any k, ℓ ≥ 0, k ̸= ℓ, ⟨Aδk, δℓ⟩ = 0.
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Proof:
Let k > ℓ. Then

⟨Aδk, δℓ⟩ = ⟨A(xk+1 − xk), δℓ⟩ = ⟨f ′(xk+1)− f ′(xk),xℓ+1 − xℓ⟩ = 0,

due to Lemma 5.18.

The vectors {δi} are called conjugate with respect to matrix A.
Now, let us be more precise with the conjugate gradient method. We will define the next

iterations as follows:

xk+1 = xk − hkf
′(xk) +

k−1∑
j=0

λjδj

Using the previous properties, we arrive that (see Exercise 6)

λj = 0, (j = 0, 1, . . . , k − 2), λk−1 =
hk∥f ′(xk)∥22

⟨f ′(xk)− f ′(xk−1), δk−1⟩
. (9)

Thus

xk+1 = xk − hkpk

where

pk = f ′(xk)−
∥f ′(xk)∥22pk−1

⟨f ′(xk)− f ′(xk−1),pk−1⟩
.

Finally, we can present the Conjugate Gradient Method

Conjugate Gradient Method

Step 0: Let x0 ∈ Rn, compute f(x0), f
′(x0) and set p0 := f ′(x0), k := 0

Step 1: Find xk+1 := xk − hkpk by “approximate line search” on the scalar hk
Step 2: Compute f(xk+1) and f ′(xk+1)
Step 3: Compute the coefficient βk+1

Step 4: Set pk+1 := f ′(xk+1)− βk+1pk, k := k + 1 and go to Step 1

The most popular choices for the coefficient βk are:

1. Hestenes-Stiefel (1952): βk+1 =
⟨f ′(xk+1),f

′(xk+1)−f ′(xk)⟩
⟨f ′(xk+1)−f ′(xk),pk⟩

.

2. Fletcher-Reeves (1964): βk+1 =
∥f ′(xk+1)∥22
∥f ′(xk)∥22

.

3. Polak-Ribière (1969): βk+1 =
⟨f ′(xk+1),f

′(xk+1)−f ′(xk)⟩
∥f ′(xk)∥22

.

4. Polak-Ribière plus: βk+1 = max
{
0,

⟨f ′(xk+1),f
′(xk+1)−f ′(xk)⟩

∥f ′(xk)∥22

}
.

5. Dai-Yuan (1999): βk+1 =
∥f ′(xk+1)∥22

⟨f ′(xk+1)−f ′(xk),pk⟩
.

Among them, Hestenes-Stiefel and Polak-Rebière are empirically preferred.
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