
hk :=
h√
k + 1

.

This is the simplest strategy.

2. Exact Line Search (Cauchy Step-Size)

The sequence {hk}∞k=0 is chosen such that

hk := argmin
h≥0

f(xk − hf ′(xk)).

This choice is only theoretical since even for the one dimensional case, it is very difficult and
expensive.

3. Goldstein-Armijo Rule

Find a sequence {hk}∞k=0 such that

α⟨f ′(xk),xk − xk+1⟩ ≤ f(xk)− f(xk+1),

β⟨f ′(xk),xk − xk+1⟩ ≥ f(xk)− f(xk+1),

where 0 < α < β < 1 are fixed parameters.

Since f(xk+1) = f(xk − hkf
′(xk)),

f(xk)− βhk∥f ′(xk)∥22 ≤ f(xk+1) ≤ f(xk)− αhk∥f ′(xk)∥22.

The acceptable steps exist unless f(xk+1) = f(xk − hf ′(xk)) is not bounded from below.

4. Barzilai-Borwein Step-Size1

Let us define sk−1 := xk − xk−1 and yk−1 := f ′(xk) − f ′(xk−1). Then, we can define the
Barzilai-Borwein (BB) step sizes {h1k}∞k=1 and {h2k}∞k=1:

h1k :=
∥sk−1∥22

⟨sk−1,yk−1⟩
,

h2k :=
⟨sk−1,yk−1⟩
∥yk−1∥22

.

The first step-size is the one which minimizes the following secant condition ∥ 1
hsk−1 − yk−1∥22

while the second one minimizes ∥sk−1 − hyk−1∥22.

Now, consider the problem

min
x∈Rn

f(x)

where f ∈ C1,1
L (Rn), and f(x) is bounded from below.

1J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA Journal of Numerical Analysis, 8
(1988), pp. 141–148.
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Let us evaluate the result of one step of the steepest descent method.
Consider y = x− hf ′(x). From Lemma 3.4,

f(y) ≤ f(x) + ⟨f ′(x),y − x⟩+ L

2
∥y − x∥22

= f(x)− h∥f ′(x)∥22 +
h2L

2
∥f ′(x)∥22

= f(x)− h

(
1− h

2
L

)
∥f ′(x)∥22. (5)

Thus, one step of the steepest descent method decreases the value of the objective function at
least as follows for h∗ = 1/L.

f(y) ≤ f(x)− 1

2L
∥f ′(x)∥22.

Now, for the Goldstein-Armijo Rule, since xk+1 = xk − hkf
′(xk), we have:

f(xk)− f(xk+1) ≤ βhk∥f ′(xk)∥22,

and from (5)

f(xk)− f(xk+1) ≥ hk

(
1− hk

2
L

)
∥f ′(xk)∥22.

Therefore, hk ≥ 2(1− β)/L.
Also, substituting in

f(xk)− f(xk+1) ≥ αhk∥f ′(xk)∥22 ≥
2

L
α(1− β)∥f ′(xk)∥22.

Thus, in the three step-size strategies excepting the BB step size considered here, we can say
that

f(xk)− f(xk+1) ≥
ω

L
∥f ′(xk)∥22

for some positive constant ω.
Summing up the above inequality we have:

ω

L

N∑
k=0

∥f ′(xk)∥22 ≤ f(x0)− f(xN+1) ≤ f(x0)− f∗

where f∗ is the optimal value of the problem.
As a simple consequence we have

∥f ′(xk)∥2 → 0 as k → ∞.

Finally,

g∗N := min
0≤k≤N

∥f ′(xk)∥2 ≤
1√

N + 1

[
L

ω
(f(x0)− f∗)

]1/2
. (6)

Remark 5.8 g∗N → 0, but we cannot say anything about the rate of convergence of the sequence
{f(xk)} or {xk}.
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Example 5.9 Consider the function f(x, y) = 1
2x

2 + 1
4y

4 − 1
2y

2. (0,−1)T and (0, 1)T are local
minimal solutions, but (0, 0)T is a stationary point.

If we start the steepest descent method from (1, 0)T , we will only converge to the stationary
point.

We focus now on the following problem class:

Model: 1. min
x∈Rn

f(x)

2. f ∈ C1,1
L (Rn)

3. f(x) is bounded from below
Oracle: Only function values are available
Approximate solution: Find x̄ ∈ Rn such that f(x̄) ≤ f(x0) and ∥f ′(x̄)∥2 < ϵ

From (6), we have

g∗N < ε if N + 1 >
L

ωε2
(f(x0)− f∗).

Remark 5.10 This is much better than the result of Theorem 5.6, since it does not depend on n.

Finally, consider the following problem under Assumption 5.11.

min
x∈Rn

f(x)

Assumption 5.11

1. f ∈ C2,2
M (Rn);

2. There is a local minimum x∗ of the function f(x);

3. We know some bound 0 < ℓ ≤ L < ∞ for the Hessian at x∗:

ℓI ⪯ f ′′(x∗) ⪯ LI;

4. Our starting point x0 is close enough to x∗.

Theorem 5.12 Let f(x) satisfy our assumptions above and let the starting point x0 be close
enough to a local minimum:

r0 = ∥x0 − x∗∥2 < r̄ :=
2ℓ

M
.

Then, the steepest descent method with step-size h∗ = 2/(L+ ℓ) converges as follows:

∥xk − x∗∥2 ≤
r̄r0

r̄ − r0

(
1− 2ℓ

L+ 3ℓ

)k

.

This rate of convergence is called (R-)linear.

Proof:
In the steepest descent method, the iterates are xk+1 = xk − hkf

′(xk).
Since f ′(x∗) = 0,

f ′(xk) = f ′(xk)− f ′(x∗) =

∫ 1

0
f ′′(x∗ + τ(xk − x∗))(xk − x∗)dτ = Gk(xk − x∗),
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and therefore,

xk+1 − x∗ = xk − x∗ − hkGk(xk − x∗) = (I − hkGk)(xk − x∗).

Let rk = ∥xk − x∗∥2. From Lemma 3.6,

f ′′(x∗)− τMrkI ⪯ f ′′(x∗ + τ(xk − x∗)) ⪯ f ′′(x∗) + τMrkI.

Integrating all parts from 0 to 1 and using our hypothesis,

(ℓ− rk
2
M)I ⪯ Gk ⪯ (L+

rk
2
M)I.

Therefore, (
1− hk(L+

rk
2
M)
)
I ⪯ I − hkGk ⪯

(
1− hk(ℓ−

rk
2
M)
)
I.

We arrive at
∥I − hkGk∥2 ≤ max{|ak(hk)|, |bk(hk)|}

where ak(h) = 1− h(ℓ− rk
2 M) and bk(h) = h(L+ rk

2 M)− 1.
Notice that ak(0) = 1 and bk(0) = −1.
Now, let us use our hypothesis that r0 < r̄.
When ak(h) = bk(h), we have 1− h(ℓ− rk

2 M) = h(L+ rk
2 M)− 1, and therefore

h∗k =
2

L+ ℓ
.

(Surprisingly, it does not depend neither on M nor rk). Finally,

rk+1 = ∥xk+1 − x∗∥2 ≤
(
1− 2

L+ ℓ

(
ℓ− rk

2
M
))

∥xk − x∗∥2.

That is,

rk+1 ≤
(
L− ℓ

L+ ℓ
+

rkM

L+ ℓ

)
rk.

and rk+1 < rk < r̄.
Now, let us analyze the rate of convergence. Multiplying the above inequality by M/(L+ ℓ),

Mrk+1

L+ ℓ
≤ M(L− ℓ)

(L+ ℓ)2
rk +

M2r2k
(L+ ℓ)2

.

Calling αk = Mrk
L+ℓ and q = 2ℓ

L+ℓ , we have

αk+1 ≤ (1− q)αk + α2
k = αk(1 + αk − q) =

αk(1− (αk − q)2)

1− (αk − q)
. (7)

Now, since rk < 2ℓ
M , αk − q = Mrk

L+ℓ − 2ℓ
L+ℓ < 0, and 1 + (αk − q) = L−ℓ

L+ℓ +
Mrk
L+ℓ > 0. Therefore,

−1 < αk − q < 0, and (7) becomes ≤ αk
1+q−αk

.

1

αk+1
≥ 1 + q

αk
− 1.

q

αk+1
− 1 ≥ q(1 + q)

αk
− q − 1 = (1 + q)

(
q

αk
− 1

)
.

and then,

q

αk
− 1 ≥ (1 + q)k

(
q

α0
− 1

)
= (1 + q)k

(
2ℓ

L+ ℓ

L+ ℓ

Mr0
− 1

)
= (1 + q)k

(
r̄

r0
− 1

)
.

Finally, we arrive at

rk = ∥xk − x∗∥2 ≤
r̄r0

r̄ − r0

(
1− 2ℓ

L+ 3ℓ

)k

.
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