This is the simplest strategy.
2. Exact Line Search (Cauchy Step-Size)
The sequence {hy}72, is chosen such that
hy = i —hf .
k= argmin f(zg — hf (xx))
This choice is only theoretical since even for the one dimensional case, it is very difficult and
expensive.
3. Goldstein-Armijo Rule

Find a sequence {hy}72, such that

ol f'(wr), ®p — Trg1)

B(f'(xk), T, — Trt1)

(AVARVAN

where 0 < a < 8 < 1 are fixed parameters.
Since f(xk41) = f(zr — haf'(zk)),
f(@r) = Bhgll /' (@n)|5 < f(@rr1) < flmr) — b f' ()5
The acceptable steps exist unless f(xgi1) = f(xr — hf'(x)) is not bounded from below.

4. Barzilai-Borwein Step-Size!

Let us define sy := @y — xx_1 and y,,_; := f'(xr) — f'(xx_1). Then, we can define the
Barzilai-Borwein (BB) step sizes {h}.}3°, and {h?}2;:

1 lsneal3
k- )
(Sk—1,Yp_1)
B2 .— (Sk—1,Yk_1)
k- 2
Hyk—le

The first step-size is the one which minimizes the following secant condition ||%s;€_1 —ye_1ll3
while the second one minimizes ||s;_1 — hy,_;|3-

Now, consider the problem

min f(x)

xecR"

where f € Ci’l(]R”), and f(zx) is bounded from below.

1J. Barzilai and J. M. Borwein, “T'wo-point step size gradient methods,” IMA Journal of Numerical Analysis, 8
(1988), pp. 141-148.
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Let us evaluate the result of one step of the steepest descent method.
Consider y = & — hf'(x). From Lemma 3.4,

) < @)+ {7 (@) y o)+ olly - ol

2
= f@) -~ b @3+ SR @)

— f@-n(1-5L) 1@ )

Thus, one step of the steepest descent method decreases the value of the objective function at
least as follows for h* = 1/L.

1
fly) < f@) = 57 1 @)ll3.
Now, for the Goldstein-Armijo Rule, since @1 = @ — hy f'(xy), we have:
f@r) = f(@r1) < Bl f' ()13,
and from (5)
h
flan) = faen) 2 (1= L) 17 @Ol

Therefore, hy, > 2(1 — 3)/L.

Also, substituting in

flax) = flanrn) > ahllf'(2)]3 > %a(l = B)IIf (@e)l3-

Thus, in the three step-size strategies excepting the BB step size considered here, we can say
that

f@w) = fl@i) > S @0l

for some positive constant w.
Summing up the above inequality we have:

N
=S IF @I < F(@o) = fl@ns) < flao) = f*
k=0

where f* is the optimal value of the problem.
As a simple consequence we have

|f (zp)||l2 =0 as k — occ.

Finally,

gy = min_|[f'(z)ll2 <

0<k<N N+1

1 L
w

1/2
L ((ao) - f*)] . (©)

Remark 5.8 g3 — 0, but we cannot say anything about the rate of convergence of the sequence

{f(zx)} or {zx}.
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Example 5.9 Consider the function f(z,y) = 22?2 + 1y* — 342 (0,—1)T and (0,1)7 are local
minimal solutions, but (0,0)7 is a stationary point.
If we start the steepest descent method from (1,0)”, we will only converge to the stationary

point.

We focus now on the following problem class:

Model: 1. min f(x)
zcR"

2. feCy'(RY)

3. f(«) is bounded from below

Oracle: Only function values are available

Approximate solution: | Find & € R” such that f(z) < f(xo) and || f'(Z)|2 < €

From (6), we have
L

Remark 5.10 This is much better than the result of Theorem 5.6, since it does not depend on n.

Finally, consider the following problem under Assumption 5.11.

Assumption 5.11
2,2 )
L. feCy (R");
2. There is a local minimum x* of the function f(x);
3. We know some bound 0 < ¢ < L < oo for the Hessian at x*:

I < f'(x*) 2 LI

4. Our starting point xg is close enough to x*.

Theorem 5.12 Let f(x) satisfy our assumptions above and let the starting point xy be close
enough to a local minimum:

o — s < 7 1= 2
ro = |To —x ri=—.
0 0 2 Vi

Then, the steepest descent method with step-size h* = 2/(L + ) converges as follows:

_ k
. o 20
_ < 1— .
I "”HQ—T—TO( L+3£>

This rate of convergence is called (R-)linear.

Proof:
In the steepest descent method, the iterates are @1 = @ — hi f'(xk).
Since f'(x*) =0,

1
flar) = fl(a) - f'(@7) = /0 (& + 1(y — 2")) (2 — 27)dr = Gi(x) — T7),
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and therefore,
Tpp1 — & =2 — " — W Gr(xp — ) = (I — hpGy)(z), — 7).

Let ry = ||@r — «*||2. From Lemma 3.6,

(") — 7MriI < f"(x* + 7(x) — %)) = (%) + 7M1
Integrating all parts from 0 to 1 and using our hypothesis,

(¢ — %M)I <Gy < (L+ %’“M)I.

Therefore,

(1 — (L + %M)) I=1— Gy = (1 - %"“M)) I.
We arrive at

1T = hiGrl2 < max{[ax(he)|, [br(hx)]}

where ay(h) =1 —h(¢ — % M) and b (h) = h(L + 5M) — 1.

Notice that a;(0) = 1 and b (0) = —1.

Now, let us use our hypothesis that rg < 7.

When ay(h) = by(h), we have 1 — h(¢ — M) = h(L + " M) — 1, and therefore

2
hy = ——.
R L

(Surprisingly, it does not depend neither on M nor r). Finally,

* 2 Tk *
e = llowns — %l < (1= 22 (0= 201) ) o = o7l

Lt/
That is,
< L—£+7’kM
T -_— TL.
Ml=\L+e¢ " L+r¢)'"

and rg <1 < T
Now, let us analyze the rate of convergence. Multiplying the above inequality by M/(L + ¢),
_ 2,.2
Mrgyq SM(L E)rk—i- M*ry '
L+¢ (L+£)2 (L +¢)?

Calling ay, = J){I:’z and ¢ = LQTQ’ we have

o (1 = (ax — q)?)
1—(x—q)

(7)

apr1 < (1= @agp +aif = ap(l+ag — q) =

Now, since 1, < QME, ap —q = ]Z[J:’g — Lg—fe < 0,and 1+ (ap — q) = f—;g + ]Z[J:’g > 0. Therefore,

o
~1 < ag—¢<0,and (7) becomes < oo
1 > 1+q_1‘
Of41 QU
1
q_lzq(—i_(])_q_lz(l—i—q)(q—l)-
k41 Ok A

and then,
q [ 4 & 20 L+/ (T
— —1>(1 ——1]=(1 —_— —1]=(1 ——1].
Qp _( +g) <a0 ) ( +q) <L+£ Mrq ( +(]) 0

Finally, we arrive at
TTro 20 k
Tk = ||£L'k — QS*HQ < (1 ) .

=170 _L+3€
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