5 Algorithms for Minimizing Unconstrained Functions

5.1 General Minimization Problem and Terminologies
Definition 5.1 We define the general minimization problem as follows

minimize  f(x)
subject to  fj(x) &0, j=1,2,...,m (3)
x €S,

where f:R" = R, f; :R" =R (j =1,2,...,m), the symbol & could be =, >, or <, and § C R".
Definition 5.2 The feasible set @ of (3) is
Q={xecS| fi(x)&0, (j=1,2,...,m)}.
In the following items we assume S = R".

o If @ =R", (3) is a unconstrained optimization problem.
o If Q@ CR", (3) is a constrained optimization problem.
e If all functionals f(x), f;(x) are differentiable, (3) is a smooth optimization problem.

e If one of functionals f(x), f;j(x) is non-differentiable, (3) is a non-smooth optimization prob-
lem.

e If all constraints are linear fj(x) = (aj,x) +b; (j = 1,2,...,m), (3) is a linear constrained
optimization problem.

— In addition, if f(z) is linear, (3) is a linear programming problem.

— In addition, if f(x) is quadratic, (3) is a quadratic programming problem.

o If f(x), fij(x) (j = 1,2,...,m) are quadratic, (3) is a quadratically constrained quadratic
programming problem.

Definition 5.3 x* is called a global optimal solution of (3) if f(x*) < f(x), Va € Q. Moreover,
f(x*) is called the global optimal value. x* is called a local optimal solution of (3) if there exists
an open ball B(x*,¢) := {& € R" | || — x*|]2 < €} such that f(z*) < f(x), Vo € B(z*,e)NQ.
Moreover, f(x*) is called a local optimal value.

5.2 Complexity Bound for a Global Optimization Problem on the Unit Box

Consider one of the simplest problems in optimization, that is, minimizing a function in the n-
dimensional box.

minimize  f(x) ()
subject to z € B, :={x cR" |0<[x]; <1, i=1,2,...,n}.

To be coherent, we use the f,-norm:

@l = max [[o:|

Let us also assume that f(x) is Lipschitz continuous on By:

[f(®) = f(y)| < Lll# - ylloo,  Va,y € B

Let us define a very simple method to solve (4), the uniform grid method.
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Given a positive integer p > 0,
1. Form (p 4 1)" points
i iy in )\
$i17i27...,in = 575)"'7;
where (i1,42,...,i,) € {0,1,...,p}"™

2. Among all points x;, , . 4,, find a point & which has the minimal value for the
objective function.

3. Return the pair (&, f(Z)) as the result.

Theorem 5.4 Let f* := f(a*) be the global optimal value for (4). Then the uniform grid method
yields

L
xz)— flz*) < —.
f@) - 1) < 5
Proof:
Let * be a global optimal solution. Then there are coordinates (i1, 2, ...,%,) such that  :=
T io,in < 5 < T 4141, in+1 =: Y. Observe that [y]; — [x]; = 1/p for i = 1,2,...,n and

[x*]l € Hx]la [y]Z] (’L =1,2,... 7”)-
Consider & = (« + y)/2 and form a new point & as:

&); == { [yli, if [z*]; > [2];

"] [x];, otherwise.

It is clear that |[&]; — [x*];| < 1/(2p) for i = 1,2,...,n. Then ||z — ¥~ = max [[2]; — [x]i] <
<i<n

1/(2p). Since & belongs to the grid,

f@) = f(&") < f(@) - f(&") < L@ — 2|00 < L/(2p).

Let us define our goal

Find x € B, such that f(x) — f(x*) < e. ‘

Corollary 5.5 The number of iterations necessary for the problem (4) for the uniform grid method
is at most I n
(L] +2)
2e
Proof:

Take p = [L/(2¢)] + 1. Then, p > L/(2¢) and from the previous theorem, f(&) — f(x*) <

L/(2p) < €. Observe that we constructed (p + 1)" points. 1

Consider the class of problems P defined as follows:

Model: min f(x),
TrebBy
f (@) is loo-Lipschitz continuous on B,,.
Oracle: Only function values are available
Approximate solution: | Find & € B, such that f(&) — f(z*) < ¢
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Theorem 5.6 For & < %, the number of iterations necessary for the class of problems P using any

method which uses only function evaluations is always at least (Lij)"

Proof:

Let p = Lij (which is > 1 from the hypothesis).

Suppose that there is a method which requires N < p™ calls of the oracle to solve the problem
in P.

Then, there is a point & € B, = {x € R" | 0 < [z]|; <1, i =1,2,...,n} where there is no test
points in the interior of B := {x | # < x < & + ¢/p} where e = (1,1,...,1)T € R™.

Let * := & + e/(2p) and consider the function f(x) := min{0, L|| — x*||sc — €}. Clearly, f is
{so-Lipschitz continuous with constant L and its global minimum is —e. Moreover, f(z) is non-zero
valued only inside the box B’ :={x | || — *||cc <¢/L}.

Since 2p < L/e, B' C{x | ||x — x|« < 1/(2p)} C B.

Therefore, f(x) is equal to zero to all test points of our method and the accuracy of the method
is €.

If the number of calls of the oracle is less than p™, the accuracy can not be better than e. 1

Theorem 5.6 supports the claim that the general optimization problem are unsolvable.

Example 5.7 Consider a problem defined by the following parameters. L = 2, n = 10, and
e=0.01 (1%).

lower bound (L/(2¢))" ;1020 calls of the oracle

computational complexity of the oracle : at least n arithmetic operations

total complexity : 10?! arithmetic operations

CPU . 1GHz or 10? arithmetic operations per second
total time : 10'2 seconds

one year : <3.2x 107 seconds

we need : > 10000 years

e If we change n by n + 1, the # of calls of the oracle is multiplied by 100.

o If we multiply € by 2, the arithmetic complexity is reduced by 1000.

We know from Corollary 5.5 that the number of iterations of the uniform grid method is at least
(|L/(2e)]+2)™. Theorem 5.6 showed that any method which uses only function evaluations requires
at least (|L/(2¢)])™ calls to have a better performance than . If for instance we take e = O(L/n),
these two bounds coincide up to a constant factor. In this sense, the uniform grid method is an
optimal method for the class of problems P.

5.3 Steepest Descent Method

Consider f: R"™ — R a differentiable function in its domain.

Steepest Descent Method
Choose: xpc R"
Iterate: x;1 =ax; — hif'(xx), k=0,1,...

We consider four strategies for the step-size hy:

1. Constant Step

The sequence {hy}32, is chosen in advance. For example

hi = h >0,
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