
Proof:
For x,y ∈ Rn,

f ′(y) = f ′(x) +

∫ 1

0
f ′′(x+ τ(y − x))(y − x)dτ

= f ′(x) +

(∫ 1

0
f ′′(x+ τ(y − x))dτ

)
(y − x).

Since ∥f ′′(x)∥2 ≤ L,

∥f ′(y)− f ′(x)∥2 ≤
∥∥∥∥∫ 1

0
f ′′(x+ τ(y − x))dτ

∥∥∥∥
2

∥y − x∥2

≤
∫ 1

0
∥f ′′(x+ τ(y − x))∥2dτ∥y − x∥2

≤ L∥y − x∥2.

On the other hand, for s ∈ Rn, and α ∈ R, α ̸= 0,

∥f ′(x+ αs)− f ′(x)∥2 ≤ |α|L∥s∥2.

Dividing both sides by |α| and taking the limit to zero,

∥f ′′(x)s∥2 ≤ L∥s∥2, s ∈ Rn.

Therefore, ∥f ′′(x)∥2 ≤ L.

Example 3.3

1. The linear function f(x) = α+ ⟨a,x⟩ ∈ C2,1
0 (Rn) since

f ′(x) = a, f ′′(x) = O.

2. The quadratic function f(x) = α + ⟨a,x⟩ + 1/2⟨Ax,x⟩ with A = AT belongs to C2,1
L (Rn)

where
f ′(x) = a+Ax, f ′′(x) = A, L = ∥A∥2.

3. The function f(x) =
√
1 + x2 ∈ C2,1

1 (R) since

f ′(x) =
x√

1 + x2
, f ′′(x) =

1

(1 + x2)3/2
≤ 1.

Lemma 3.4 Let f ∈ C1,1
L (Rn). Then for any x,y ∈ Rn, we have

|f(y)− f(x)− ⟨f ′(x),y − x⟩| ≤ L

2
∥y − x∥22.

Proof:
For any x,y ∈ Rn, we have

f(y) = f(x) +

∫ 1

0
⟨f ′(x+ τ(y − x)),y − x⟩dτ

= f(x) + ⟨f ′(x),y − x⟩+
∫ 1

0
⟨f ′(x+ τ(y − x))− f ′(x),y − x⟩dτ.
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Therefore,

|f(y)− f(x)− ⟨f ′(x),y − x⟩| =

∣∣∣∣∫ 1

0
⟨f ′(x+ τ(y − x))− f ′(x),y − x⟩dτ

∣∣∣∣
≤

∫ 1

0
|⟨f ′(x+ τ(y − x))− f ′(x),y − x⟩|dτ

≤
∫ 1

0
∥f ′(x+ τ(y − x))− f ′(x)∥2∥y − x∥2dτ

≤
∫ 1

0
τL∥y − x∥22dτ =

L

2
∥y − x∥22.

Consider a function f ∈ C1,1
L (Rn). Let us fix x0 ∈ Rn, and define two quadratic functions:

ϕ1(x) = f(x0) + ⟨f ′(x0),x− x0⟩ −
L

2
∥x− x0∥22,

ϕ2(x) = f(x0) + ⟨f ′(x0),x− x0⟩+
L

2
∥x− x0∥22.

Then the graph of the function f is located between the graphs of ϕ1 and ϕ2:

ϕ1(x) ≤ f(x) ≤ ϕ2(x), x ∈ Rn.

Lemma 3.5 Let f ∈ C2,2
M (Rn). Then for all x,y ∈ Rn, we have

∥f ′(y)− f ′(x)− f ′′(x)(y − x)∥2 ≤
M

2
∥y − x∥22,

|f(y)− f(x)− ⟨f ′(x),y − x⟩ − 1

2
⟨f ′′(x)(y − x),y − x⟩| ≤ M

6
∥y − x∥32.

Lemma 3.6 Let f ∈ C2,2
M (Rn), with ∥f ′′(x)− f ′′(y)∥2 ≤ M∥x− y∥2. Then

f ′′(x)−M∥y − x∥2I ⪯ f ′′(y) ⪯ f ′′(x) +M∥y − x∥2I.

Proof:
Since f ∈ C2,2

M (Rn), ∥f ′′(y) − f ′′(x)∥2 ≤ M∥y − x∥2. This means that the eigenvalues of the
symmetric matrix f ′′(y)− f ′′(x) satisfy:

|λi(f
′′(y)− f ′′(x))| ≤ M∥y − x∥2, i = 1, 2, . . . , n.

Therefore,
−M∥y − x∥2I ⪯ f ′′(y)− f ′′(x) ⪯ M∥y − x∥2I.

3.1 Exercises

1. Prove Lemma 3.5.
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4 Optimality Conditions for Differentiable Functions in Rn

Let f(x) be differentiable at x̄. Then for y ∈ Rn, we have

f(y) = f(x̄) + ⟨f ′(x̄),y − x̄⟩+ o(∥y − x̄∥2),

where o(r) is some function of r > 0 such that

lim
r→0

1

r
o(r) = 0, o(0) = 0.

Let s be a direction in Rn such that ∥s∥2 = 1. Consider the local decrease (or increase) of f(x)
along s:

∆(s) = lim
α→0

1

α
[f(x̄+ αs)− f(x̄)] .

Since f(x̄+ αs)− f(x̄) = α⟨f ′(x̄), s⟩+ o(∥αs∥2), we have ∆(s) = ⟨f ′(x̄), s⟩.
Using the Cauchy-Schwartz inequality −∥x∥2∥y∥2 ≤ ⟨x,y⟩ ≤ ∥x∥2∥y∥2,

∆(s) = ⟨f ′(x̄), s⟩ ≥ −∥f ′(x̄)∥2.

Choosing the direction s̄ = −f ′(x̄)/∥f ′(x̄)∥2,

∆(s̄) = −
⟨
f ′(x̄),

f ′(x̄)

∥f ′(x̄)∥2

⟩
= −∥f ′(x̄)∥2.

Thus, the direction −f ′(x̄) is the direction of the fastest local decrease of f(x) at point x̄.

Theorem 4.1 (First-order necessary optimality condition) Let x∗ be a local minimum of
the differentiable function f(x). Then

f ′(x∗) = 0.

Proof:
Let x∗ be the local minimum of f(x). Then, there is r > 0 such that for all y with ∥y−x∗∥2 ≤ r,

f(y) ≥ f(x∗).
Since f is differentiable,

f(y) = f(x∗) + ⟨f ′(x∗),y − x∗⟩+ o(∥y − x∗∥2) ≥ f(x∗).

Dividing by ∥y − x∗∥2, and taking the limit y → x∗,

⟨f ′(x∗), s⟩ ≥ 0, ∀s ∈ Rn, ∥s∥2 = 1.

Consider the opposite direction −s, and then we conclude that

⟨f ′(x∗), s⟩ = 0, ∀s ∈ Rn, ∥s∥2 = 1.

Choosing s = ei (i = 1, 2, . . . , n), we conclude that f ′(x∗) = 0.

Remark 4.2 For the first-order sufficient optimality condition, we need convexity for the function
f(x).

Corollary 4.3 Let x∗ be a local minimum of a differentiable function f(x) subject to linear equality
constraints

x ∈ L := {x ∈ Rn | Ax = b} ̸= ∅,

where A ∈ Rm×n, b ∈ Rm, m < n.
Then, there exists a vector of multipliers λ∗ such that

f ′(x∗) = ATλ∗.
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Proof:
Consider the vectors ui (i = 1, 2, . . . , k) with k ≥ n−m which form an orthonormal basis of the

null space of A. Then, x ∈ L can be represented as

x = x(t) := x∗ +
k∑

i=1

tiui, t ∈ Rk.

Moreover, the point t = 0 is the local minimal solution of the function ϕ(t) = f(x(t)).
From Theorem 4.1, ϕ′(0) = 0. That is,

dϕ

dti
(0) = ⟨f ′(x∗),ui⟩ = 0, i = 1, 2, . . . , k.

Now there is t∗ and λ∗ such that

f ′(x∗) =
k∑

i=1

t∗iui +ATλ∗.

For each i = 1, 2, . . . , k,
⟨f ′(x∗),ui⟩ = t∗i = 0.

Therefore, we have the result.

The following type of result is called theorems of the alternative, and are closed related to duality
theory in optimization.

Corollary 4.4 Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn, η ∈ R, either{
⟨c,x⟩ < η
Ax = b

has a solution x ∈ Rn, (1)

or 
{

⟨b,λ⟩ > 0

ATλ = 0
or{

⟨b,λ⟩ ≥ η

ATλ = c

 has a solution λ ∈ Rm, (2)

but never both

Proof:
Let us first show that if ∃x ∈ Rn satisfying (1), ̸ ∃λ ∈ Rm satisfying (2). Let us assume by

contradiction that ∃λ. Then ⟨λ,Ax⟩ = ⟨λ, b⟩ and in the homogeneous case it gives 0 = ⟨λ, b⟩ > 0
and in the non-homogeneous case it gives η > ⟨c,x⟩ = ⟨λ, b⟩ ≥ η. Both of cases are impossible.

Now, let us assume that ̸ ∃x ∈ Rn satisfying (1). If additionally ̸ ∃x ∈ Rn such that Ax = b, it
means that the columns of the matrix A do not spam the vector b. Therefore, there is 0 ̸= λ ∈ Rm

which is orthogonal to all of these columns and ⟨b,λ⟩ ̸= 0. Selecting the correct sign, we constructed
a λ which satisfies the homogeneous system of (2). Now, if for all x such that Ax = b we have
⟨c,x⟩ ≥ η, it means that the minimization of the function f(x) = ⟨c,x⟩ subject to Ax = b has an
optimal solution x∗ with f(x∗) ≥ η (since ∃x ∈ Rn such that Ax = b, we can always assume that
m ≤ n eliminating redundant linear constraints from the system. If n = m and A is nonsingular,
take λ = A−Tc. Otherwise, we can eliminate again redundant linear constraint to have n > m).
From Corollary 4.3, ∃λ ∈ Rm such that ATλ = c, and ⟨b,λ⟩ = ⟨x∗,ATλ⟩ = ⟨x∗, c⟩ ≥ η.

If f(x) is twice differentiable at x̄ ∈ Rn, then for y ∈ Rn, we have

f ′(y) = f ′(x̄) + f ′′(x̄)(y − x̄) + o(∥y − x̄∥2),

where o(r) is such that limr→0 ∥o(r)∥2/r = 0 and o(0) = 0.
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Theorem 4.5 (Second-order necessary optimality condition) Let x∗ be a local minimum of
a twice continuously differentiable function f(x). Then

f ′(x∗) = 0, f ′′(x∗) ⪰ O.

Proof:
Since x∗ is a local minimum of f(x), ∃r > 0 such that for all y ∈ Rn which satisfy ∥y−x∗∥2 ≤ r,

f(y) ≥ f(x∗).
From Theorem 4.1, f ′(x∗) = 0. Then

f(y) = f(x∗) +
1

2
⟨f ′′(x∗)(y − x∗),y − x∗⟩+ o(∥y − x∗∥22) ≥ f(x∗).

And ⟨f ′′(x∗)s, s⟩ ≥ 0, ∀s ∈ Rn with ∥s∥2 = 1.

Theorem 4.6 (Second-order sufficient optimality condition) Let the function f(x) be twice
continuously differentiable on Rn, and let x∗ satisfy the following conditions:

f ′(x∗) = 0, f ′′(x∗) ≻ O.

Then, x∗ is a strict local minimum of f(x).

Proof:
In a small neighborhood of x∗, function f(x∗) can be represented as:

f(y) = f(x∗) +
1

2
⟨f ′′(x∗)(y − x∗),y − x∗⟩+ o(∥y − x∗∥22).

Since o(r)/r → 0, there is a r̄ > 0 such that for all r ∈ [0, r̄],

|o(r)| ≤ r

4
λ1(f

′′(x∗)),

where λ1(f
′′(x∗)) is the smallest eigenvalue of the symmetric matrix f ′′(x∗) which is positive. Then

f(y) ≥ f(x∗) +
1

2
λ1(f

′′(x∗))∥y − x∗∥22 + o(∥y − x∗∥22).

Considering that r̄ < 1, |o(r2)| ≤ r2/4λ1(f
′′(x∗)) for r ∈ [0, r̄], finally

f(y) ≥ f(x∗) +
1

4
λ1(f

′′(x∗))∥y − x∗∥22 > f(x∗).

4.1 Exercises

1. Let f : Rn → R, g : Rn → Rm continuously differentiable functions and h ∈ Rm. Define the
following optimization problem. 

minimize f(x)
subject to g(x) = h

x ∈ Rn

Write the Karush-Kuhn-Tucker (KKT) conditions corresponding to the above problem.

2. In view of Theorem 4.6, find a twice continuously differentiable function on Rn which satisfies
f ′(x∗) = 0, f ′′(x∗) ⪰ O, but x∗ is not a local minimum of f(x).

3. Let f : Rn → R be a continuous differentiable and convex function. If x∗ ∈ Rn is such that
f ′(x∗) = 0, then show that x∗ is a global minimum for f(x).
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