Proof:
For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
f^{\prime}(\boldsymbol{y}) & =f^{\prime}(\boldsymbol{x})+\int_{0}^{1} f^{\prime \prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x}) d \tau \\
& =f^{\prime}(\boldsymbol{x})+\left(\int_{0}^{1} f^{\prime \prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x})) d \tau\right)(\boldsymbol{y}-\boldsymbol{x})
\end{aligned}
$$

Since $\left\|f^{\prime \prime}(\boldsymbol{x})\right\|_{2} \leq L$,

$$
\begin{aligned}
\left\|f^{\prime}(\boldsymbol{y})-f^{\prime}(\boldsymbol{x})\right\|_{2} & \leq\left\|\int_{0}^{1} f^{\prime \prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x})) d \tau\right\|_{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \\
& \leq \int_{0}^{1}\left\|f^{\prime \prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))\right\|_{2} d \tau\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \\
& \leq L\|\boldsymbol{y}-\boldsymbol{x}\|_{2}
\end{aligned}
$$

On the other hand, for $s \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}, \alpha \neq 0$,

$$
\left\|f^{\prime}(\boldsymbol{x}+\alpha \boldsymbol{s})-f^{\prime}(\boldsymbol{x})\right\|_{2} \leq|\alpha| L\|\boldsymbol{s}\|_{2}
$$

Dividing both sides by $|\alpha|$ and taking the limit to zero,

$$
\left\|f^{\prime \prime}(\boldsymbol{x}) \boldsymbol{s}\right\|_{2} \leq L\|\boldsymbol{s}\|_{2}, \quad \boldsymbol{s} \in \mathbb{R}^{n}
$$

Therefore, $\left\|f^{\prime \prime}(\boldsymbol{x})\right\|_{2} \leq L$.

Example 3.3

1. The linear function $f(\boldsymbol{x})=\alpha+\langle\boldsymbol{a}, \boldsymbol{x}\rangle \in \mathcal{C}_{0}^{2,1}\left(\mathbb{R}^{n}\right)$ since

$$
f^{\prime}(\boldsymbol{x})=\boldsymbol{a}, \quad f^{\prime \prime}(\boldsymbol{x})=\boldsymbol{O}
$$

2. The quadratic function $f(\boldsymbol{x})=\alpha+\langle\boldsymbol{a}, \boldsymbol{x}\rangle+1 / 2\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle$ with $\boldsymbol{A}=\boldsymbol{A}^{T}$ belongs to $\mathcal{C}_{L}^{2,1}\left(\mathbb{R}^{n}\right)$ where

$$
f^{\prime}(\boldsymbol{x})=\boldsymbol{a}+\boldsymbol{A} \boldsymbol{x}, \quad f^{\prime \prime}(\boldsymbol{x})=\boldsymbol{A}, \quad L=\|\boldsymbol{A}\|_{2}
$$

3. The function $f(x)=\sqrt{1+x^{2}} \in \mathcal{C}_{1}^{2,1}(\mathbb{R})$ since

$$
f^{\prime}(x)=\frac{x}{\sqrt{1+x^{2}}}, \quad f^{\prime \prime}(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}} \leq 1
$$

Lemma 3.4 Let $f \in \mathcal{C}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$. Then for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have

$$
\left|f(\boldsymbol{y})-f(\boldsymbol{x})-\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle\right| \leq \frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}
$$

Proof:
For any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
f(\boldsymbol{y}) & =f(\boldsymbol{x})+\int_{0}^{1}\left\langle f^{\prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x})), \boldsymbol{y}-\boldsymbol{x}\right\rangle d \tau \\
& =f(\boldsymbol{x})+\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle+\int_{0}^{1}\left\langle f^{\prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle d \tau
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|f(\boldsymbol{y})-f(\boldsymbol{x})-\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle\right| & =\left|\int_{0}^{1}\left\langle f^{\prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle d \tau\right| \\
& \leq \int_{0}^{1}\left|\left\langle f^{\prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle\right| d \tau \\
& \leq \int_{0}^{1}\left\|f^{\prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-f^{\prime}(\boldsymbol{x})\right\|_{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2} d \tau \\
& \leq \int_{0}^{1} \tau L\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2} d \tau=\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}
\end{aligned}
$$

Consider a function $f \in \mathcal{C}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$. Let us fix $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, and define two quadratic functions:

$$
\begin{aligned}
\phi_{1}(\boldsymbol{x}) & =f\left(\boldsymbol{x}_{0}\right)+\left\langle f^{\prime}\left(\boldsymbol{x}_{0}\right), \boldsymbol{x}-\boldsymbol{x}_{0}\right\rangle-\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{2}^{2} \\
\phi_{2}(\boldsymbol{x}) & =f\left(\boldsymbol{x}_{0}\right)+\left\langle f^{\prime}\left(\boldsymbol{x}_{0}\right), \boldsymbol{x}-\boldsymbol{x}_{0}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{2}^{2}
\end{aligned}
$$

Then the graph of the function f is located between the graphs of ϕ_{1} and ϕ_{2} :

$$
\phi_{1}(\boldsymbol{x}) \leq f(\boldsymbol{x}) \leq \phi_{2}(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^{n}
$$

Lemma 3.5 Let $f \in \mathcal{C}_{M}^{2,2}\left(\mathbb{R}^{n}\right)$. Then for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have

$$
\begin{gathered}
\left\|f^{\prime}(\boldsymbol{y})-f^{\prime}(\boldsymbol{x})-f^{\prime \prime}(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x})\right\|_{2} \leq \frac{M}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2} \\
\left|f(\boldsymbol{y})-f(\boldsymbol{x})-\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle-\frac{1}{2}\left\langle f^{\prime \prime}(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle\right| \leq \frac{M}{6}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{3}
\end{gathered}
$$

Lemma 3.6 Let $f \in \mathcal{C}_{M}^{2,2}\left(\mathbb{R}^{n}\right)$, with $\left\|f^{\prime \prime}(\boldsymbol{x})-f^{\prime \prime}(\boldsymbol{y})\right\|_{2} \leq M\|\boldsymbol{x}-\boldsymbol{y}\|_{2}$. Then

$$
f^{\prime \prime}(\boldsymbol{x})-M\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \boldsymbol{I} \preceq f^{\prime \prime}(\boldsymbol{y}) \preceq f^{\prime \prime}(\boldsymbol{x})+M\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \boldsymbol{I} .
$$

Proof:
Since $f \in \mathcal{C}_{M}^{2,2}\left(\mathbb{R}^{n}\right),\left\|f^{\prime \prime}(\boldsymbol{y})-f^{\prime \prime}(\boldsymbol{x})\right\|_{2} \leq M\|\boldsymbol{y}-\boldsymbol{x}\|_{2}$. This means that the eigenvalues of the symmetric matrix $f^{\prime \prime}(\boldsymbol{y})-f^{\prime \prime}(\boldsymbol{x})$ satisfy:

$$
\left|\lambda_{i}\left(f^{\prime \prime}(\boldsymbol{y})-f^{\prime \prime}(\boldsymbol{x})\right)\right| \leq M\|\boldsymbol{y}-\boldsymbol{x}\|_{2}, \quad i=1,2, \ldots, n
$$

Therefore,

$$
-M\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \boldsymbol{I} \preceq f^{\prime \prime}(\boldsymbol{y})-f^{\prime \prime}(\boldsymbol{x}) \preceq M\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \boldsymbol{I} .
$$

3.1 Exercises

1. Prove Lemma 3.5.

4 Optimality Conditions for Differentiable Functions in \mathbb{R}^{n}

Let $f(\boldsymbol{x})$ be differentiable at $\overline{\boldsymbol{x}}$. Then for $\boldsymbol{y} \in \mathbb{R}^{n}$, we have

$$
f(\boldsymbol{y})=f(\overline{\boldsymbol{x}})+\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{y}-\overline{\boldsymbol{x}}\right\rangle+o\left(\|\boldsymbol{y}-\overline{\boldsymbol{x}}\|_{2}\right)
$$

where $o(r)$ is some function of $r>0$ such that

$$
\lim _{r \rightarrow 0} \frac{1}{r} o(r)=0, o(0)=0
$$

Let \boldsymbol{s} be a direction in \mathbb{R}^{n} such that $\|\boldsymbol{s}\|_{2}=1$. Consider the local decrease (or increase) of $f(\boldsymbol{x})$ along s :

$$
\Delta(\boldsymbol{s})=\lim _{\alpha \rightarrow 0} \frac{1}{\alpha}[f(\overline{\boldsymbol{x}}+\alpha \boldsymbol{s})-f(\overline{\boldsymbol{x}})] .
$$

Since $f(\overline{\boldsymbol{x}}+\alpha \boldsymbol{s})-f(\overline{\boldsymbol{x}})=\alpha\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{s}\right\rangle+o\left(\|\alpha \boldsymbol{s}\|_{2}\right)$, we have $\Delta(\boldsymbol{s})=\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{s}\right\rangle$.
Using the Cauchy-Schwartz inequality $-\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2} \leq\langle\boldsymbol{x}, \boldsymbol{y}\rangle \leq\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2}$,

$$
\Delta(\boldsymbol{s})=\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \boldsymbol{s}\right\rangle \geq-\left\|f^{\prime}(\overline{\boldsymbol{x}})\right\|_{2} .
$$

Choosing the direction $\overline{\boldsymbol{s}}=-f^{\prime}(\overline{\boldsymbol{x}}) /\left\|f^{\prime}(\overline{\boldsymbol{x}})\right\|_{2}$,

$$
\Delta(\overline{\boldsymbol{s}})=-\left\langle f^{\prime}(\overline{\boldsymbol{x}}), \frac{f^{\prime}(\overline{\boldsymbol{x}})}{\left\|f^{\prime}(\overline{\boldsymbol{x}})\right\|_{2}}\right\rangle=-\left\|f^{\prime}(\overline{\boldsymbol{x}})\right\|_{2}
$$

Thus, the direction $-f^{\prime}(\overline{\boldsymbol{x}})$ is the direction of the fastest local decrease of $f(\boldsymbol{x})$ at point $\overline{\boldsymbol{x}}$.
Theorem 4.1 (First-order necessary optimality condition) Let \boldsymbol{x}^{*} be a local minimum of the differentiable function $f(\boldsymbol{x})$. Then

$$
f^{\prime}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}
$$

Proof:
Let \boldsymbol{x}^{*} be the local minimum of $f(\boldsymbol{x})$. Then, there is $r>0$ such that for all \boldsymbol{y} with $\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2} \leq r$, $f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}^{*}\right)$.

Since f is differentiable,

$$
f(\boldsymbol{y})=f\left(\boldsymbol{x}^{*}\right)+\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{y}-\boldsymbol{x}^{*}\right\rangle+o\left(\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}\right) \geq f\left(\boldsymbol{x}^{*}\right) .
$$

Dividing by $\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}$, and taking the limit $\boldsymbol{y} \rightarrow \boldsymbol{x}^{*}$,

$$
\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{s}\right\rangle \geq 0, \quad \forall s \in \mathbb{R}^{n}, \quad\|\boldsymbol{s}\|_{2}=1
$$

Consider the opposite direction $\boldsymbol{- s}$, and then we conclude that

$$
\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{s}\right\rangle=0, \quad \forall s \in \mathbb{R}^{n}, \quad\|\boldsymbol{s}\|_{2}=1
$$

Choosing $\boldsymbol{s}=\boldsymbol{e}_{i} \quad(i=1,2, \ldots, n)$, we conclude that $f^{\prime}\left(\boldsymbol{x}^{*}\right)=0$.
Remark 4.2 For the first-order sufficient optimality condition, we need convexity for the function $f(\boldsymbol{x})$.

Corollary 4.3 Let \boldsymbol{x}^{*} be a local minimum of a differentiable function $f(\boldsymbol{x})$ subject to linear equality constraints

$$
\boldsymbol{x} \in \mathcal{L}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\} \neq \emptyset
$$

where $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^{m}, m<n$.
Then, there exists a vector of multipliers $\boldsymbol{\lambda}^{*}$ such that

$$
f^{\prime}\left(\boldsymbol{x}^{*}\right)=\boldsymbol{A}^{T} \boldsymbol{\lambda}^{*}
$$

Proof:
Consider the vectors $\boldsymbol{u}_{i}(i=1,2, \ldots, k)$ with $k \geq n-m$ which form an orthonormal basis of the null space of \boldsymbol{A}. Then, $\boldsymbol{x} \in \mathcal{L}$ can be represented as

$$
\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{t}):=\boldsymbol{x}^{*}+\sum_{i=1}^{k} t_{i} \boldsymbol{u}_{i}, \quad \boldsymbol{t} \in \mathbb{R}^{k}
$$

Moreover, the point $\boldsymbol{t}=\mathbf{0}$ is the local minimal solution of the function $\phi(\boldsymbol{t})=f(\boldsymbol{x}(\boldsymbol{t}))$.
From Theorem 4.1, $\phi^{\prime}(\mathbf{0})=\mathbf{0}$. That is,

$$
\frac{d \phi}{d t_{i}}(\mathbf{0})=\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{u}_{i}\right\rangle=0, \quad i=1,2, \ldots, k
$$

Now there is \boldsymbol{t}^{*} and $\boldsymbol{\lambda}^{*}$ such that

$$
f^{\prime}\left(\boldsymbol{x}^{*}\right)=\sum_{i=1}^{k} t_{i}^{*} \boldsymbol{u}_{i}+\boldsymbol{A}^{T} \boldsymbol{\lambda}^{*}
$$

For each $i=1,2, \ldots, k$,

$$
\left\langle f^{\prime}\left(\boldsymbol{x}^{*}\right), \boldsymbol{u}_{i}\right\rangle=t_{i}^{*}=0
$$

Therefore, we have the result.
The following type of result is called theorems of the alternative, and are closed related to duality theory in optimization.

Corollary 4.4 Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^{m}, \boldsymbol{c} \in \mathbb{R}^{n}, \eta \in \mathbb{R}$, either

$$
\left\{\begin{array}{c}
\langle\boldsymbol{c}, \boldsymbol{x}\rangle<\eta \tag{1}\\
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{array} \quad \text { has a solution } \boldsymbol{x} \in \mathbb{R}^{n}\right.
$$

or

$$
\left(\begin{array}{c}
\left\{\begin{array}{c}
\langle\boldsymbol{b}, \boldsymbol{\lambda}\rangle>0 \\
\boldsymbol{A}^{T} \boldsymbol{\lambda}=\mathbf{0} \\
\text { or } \\
\left\{\begin{array}{c}
\langle\boldsymbol{b}, \boldsymbol{\lambda}\rangle \geq \eta \\
\boldsymbol{A}^{T} \boldsymbol{\lambda}=\boldsymbol{c}
\end{array}\right.
\end{array}\right) \text { has a solution } \boldsymbol{\lambda} \in \mathbb{R}^{m}, \tag{2}
\end{array}\right.
$$

but never both
Proof:
Let us first show that if $\exists \boldsymbol{x} \in \mathbb{R}^{n}$ satisfying (1), $\boldsymbol{\exists} \boldsymbol{\lambda} \in \mathbb{R}^{m}$ satisfying (2). Let us assume by contradiction that $\exists \boldsymbol{\lambda}$. Then $\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}\rangle=\langle\boldsymbol{\lambda}, \boldsymbol{b}\rangle$ and in the homogeneous case it gives $0=\langle\boldsymbol{\lambda}, \boldsymbol{b}\rangle>0$ and in the non-homogeneous case it gives $\eta>\langle\boldsymbol{c}, \boldsymbol{x}\rangle=\langle\boldsymbol{\lambda}, \boldsymbol{b}\rangle \geq \eta$. Both of cases are impossible.

Now, let us assume that $\nexists \boldsymbol{x} \in \mathbb{R}^{n}$ satisfying (1). If additionally $\nexists \boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, it means that the columns of the matrix \boldsymbol{A} do not spam the vector \boldsymbol{b}. Therefore, there is $\mathbf{0} \neq \boldsymbol{\lambda} \in \mathbb{R}^{m}$ which is orthogonal to all of these columns and $\langle\boldsymbol{b}, \boldsymbol{\lambda}\rangle \neq 0$. Selecting the correct sign, we constructed a $\boldsymbol{\lambda}$ which satisfies the homogeneous system of (2). Now, if for all \boldsymbol{x} such that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ we have $\langle\boldsymbol{c}, \boldsymbol{x}\rangle \geq \eta$, it means that the minimization of the function $f(\boldsymbol{x})=\langle\boldsymbol{c}, \boldsymbol{x}\rangle$ subject to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has an optimal solution \boldsymbol{x}^{*} with $f\left(\boldsymbol{x}^{*}\right) \geq \eta$ (since $\exists \boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, we can always assume that $m \leq n$ eliminating redundant linear constraints from the system. If $n=m$ and \boldsymbol{A} is nonsingular, take $\boldsymbol{\lambda}=\boldsymbol{A}^{-T} \boldsymbol{c}$. Otherwise, we can eliminate again redundant linear constraint to have $n>m$). From Corollary $4.3, \exists \boldsymbol{\lambda} \in \mathbb{R}^{m}$ such that $\boldsymbol{A}^{T} \boldsymbol{\lambda}=\boldsymbol{c}$, and $\langle\boldsymbol{b}, \boldsymbol{\lambda}\rangle=\left\langle\boldsymbol{x}^{*}, \boldsymbol{A}^{T} \boldsymbol{\lambda}\right\rangle=\left\langle\boldsymbol{x}^{*}, \boldsymbol{c}\right\rangle \geq \eta$.

If $f(\boldsymbol{x})$ is twice differentiable at $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$, then for $\boldsymbol{y} \in \mathbb{R}^{n}$, we have

$$
f^{\prime}(\boldsymbol{y})=f^{\prime}(\overline{\boldsymbol{x}})+f^{\prime \prime}(\overline{\boldsymbol{x}})(\boldsymbol{y}-\overline{\boldsymbol{x}})+\boldsymbol{o}\left(\|\boldsymbol{y}-\overline{\boldsymbol{x}}\|_{2}\right)
$$

where $\boldsymbol{o}(r)$ is such that $\lim _{r \rightarrow 0}\|\boldsymbol{o}(r)\|_{2} / r=0$ and $\boldsymbol{o}(0)=0$.

Theorem 4.5 (Second-order necessary optimality condition) Let \boldsymbol{x}^{*} be a local minimum of a twice continuously differentiable function $f(\boldsymbol{x})$. Then

$$
f^{\prime}\left(\boldsymbol{x}^{*}\right)=0, \quad f^{\prime \prime}\left(\boldsymbol{x}^{*}\right) \succeq \boldsymbol{O} .
$$

Proof:
Since \boldsymbol{x}^{*} is a local minimum of $f(\boldsymbol{x}), \exists r>0$ such that for all $\boldsymbol{y} \in \mathbb{R}^{n}$ which satisfy $\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2} \leq r$, $f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}^{*}\right)$.

From Theorem 4.1, $f^{\prime}\left(\boldsymbol{x}^{*}\right)=0$. Then

$$
f(\boldsymbol{y})=f\left(\boldsymbol{x}^{*}\right)+\frac{1}{2}\left\langle f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right), \boldsymbol{y}-\boldsymbol{x}^{*}\right\rangle+o\left(\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right) \geq f\left(\boldsymbol{x}^{*}\right) .
$$

And $\left\langle f^{\prime \prime}\left(\boldsymbol{x}^{*}\right) s, s\right\rangle \geq 0, \forall s \in \mathbb{R}^{n}$ with $\|s\|_{2}=1$.
Theorem 4.6 (Second-order sufficient optimality condition) Let the function $f(\boldsymbol{x})$ be twice continuously differentiable on \mathbb{R}^{n}, and let \boldsymbol{x}^{*} satisfy the following conditions:

$$
f^{\prime}\left(\boldsymbol{x}^{*}\right)=0, \quad f^{\prime \prime}\left(\boldsymbol{x}^{*}\right) \succ \boldsymbol{O} .
$$

Then, \boldsymbol{x}^{*} is a strict local minimum of $f(\boldsymbol{x})$.
Proof:
In a small neighborhood of \boldsymbol{x}^{*}, function $f\left(\boldsymbol{x}^{*}\right)$ can be represented as:

$$
f(\boldsymbol{y})=f\left(\boldsymbol{x}^{*}\right)+\frac{1}{2}\left\langle f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right), \boldsymbol{y}-\boldsymbol{x}^{*}\right\rangle+o\left(\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right) .
$$

Since $o(r) / r \rightarrow 0$, there is a $\bar{r}>0$ such that for all $r \in[0, \bar{r}]$,

$$
|o(r)| \leq \frac{r}{4} \lambda_{1}\left(f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)\right),
$$

where $\lambda_{1}\left(f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)\right)$ is the smallest eigenvalue of the symmetric matrix $f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)$ which is positive. Then

$$
f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}^{*}\right)+\frac{1}{2} \lambda_{1}\left(f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)\right)\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}^{2}+o\left(\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right) .
$$

Considering that $\bar{r}<1,\left|o\left(r^{2}\right)\right| \leq r^{2} / 4 \lambda_{1}\left(f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)\right)$ for $r \in[0, \bar{r}]$, finally

$$
f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}^{*}\right)+\frac{1}{4} \lambda_{1}\left(f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)\right)\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}^{2}>f\left(\boldsymbol{x}^{*}\right) .
$$

4.1 Exercises

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ continuously differentiable functions and $\boldsymbol{h} \in \mathbb{R}^{m}$. Define the following optimization problem.

$$
\begin{cases}\text { minimize } & f(\boldsymbol{x}) \\ \text { subject to } & g(\boldsymbol{x})=\boldsymbol{h} \\ & \boldsymbol{x} \in \mathbb{R}^{n}\end{cases}
$$

Write the Karush-Kuhn-Tucker (KKT) conditions corresponding to the above problem.
2. In view of Theorem 4.6 , find a twice continuously differentiable function on \mathbb{R}^{n} which satisfies $f^{\prime}\left(\boldsymbol{x}^{*}\right)=0, \quad f^{\prime \prime}\left(\boldsymbol{x}^{*}\right) \succeq \boldsymbol{O}$, but \boldsymbol{x}^{*} is not a local minimum of $f(\boldsymbol{x})$.
3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous differentiable and convex function. If $\boldsymbol{x}^{*} \in \mathbb{R}^{n}$ is such that $f^{\prime}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$, then show that \boldsymbol{x}^{*} is a global minimum for $f(\boldsymbol{x})$.

