Proof:
For x,y € R",

Fy) = fle)+ /0 (@ + Ty — z))(y - @)dr

~ @+ ( a4y ©)ir ) (v - a).

Since [|f"(z)[l2 < L,

1/ (y) = f'(2)ll2

IN

ly — |2
2

1
/0 (@ + r(y — x))dr

1
/0 1" (@ + (g — 2))|l2drlly — -
Ly - a|s.

IN

IN

On the other hand, for s € R", and a € R, a # 0,
1 (@ + as) — f(@)ll2 < |alL]s]}2.
Dividing both sides by |a| and taking the limit to zero,
11" (@)s]l2 < Lls|l2, s €R™
Therefore, || f”(x)|2 < L. 1
Example 3.3
1. The linear function f(x) = o + (a,z) € Cy'' (R™) since
fll)=a, f'(x)=0.

2. The quadratic function f(x) = o + (a,z) + 1/2(Ax,x) with A = AT belongs to C%’l(R”)
where

fll@)=a+ Az, f'(x)=A, L=]|A

3. The function f(z) = 1+ 22 € CP'(R) since

/ . x 17 . 1
P = 10 = G <1

Lemma 3.4 Let f € Ci’l(R"). Then for any x,y € R", we have

1)~ @)~ @)y~ )] < 5y~ =l

Proof:
For any x,y € R", we have

1
f) = f@)+ /0 ('@ + 7(y — @),y — @)dr

= f@)+ @)y )+ /0 '@+ r(y - x) — ['(@),y - z)dr.



Therefore,

1
f(y) = f(x) = {f'(x).y — )| = /O<f'(w+7(y—w))—f'(fv),y—@dT

1

< [ Wetrw—e) - @)y -a)
1

< /O||f’(oc+7(y_a,))_f/(m)|2||y_m”2d7
1

L
< [ rLlly = alar = Sy -l

Consider a function f € Ci’l(R”). Let us fix £y € R", and define two quadratic functions:

bil@) = Flwo) +(f (@o),w — o) — 5 ko — woll

bola) = )+ (@)@ - 20) + e ol

Then the graph of the function f is located between the graphs of ¢1 and ¢o:
¢1(z) < f(z) < ¢o(x), = €R™

Lemma 3.5 Let f € C?\f(R”). Then for all ,y € R", we have

17 () ~ /@) ~ @)y ~ Dl < 5 Iy~ 2l

1

F(w) ~ F(@) ~ @)y~ o)~ (P @)y~ o)y o) < ¢y~ 2l

Lemma 3.6 Let f € C37(R"), with || f”(z) — f"(y)|la < M|z — y||2. Then
(@) = Mlly —z|2I = f"(y) = f"(z) + M|y — z[]I.

Proof:
Since f € C?\}IZ(R”), If"(y) — f"(x)]l2 < M|ly — x||2. This means that the eigenvalues of the
symmetric matrix f”(y) — f”(x) satisfy:

Ni(f"(y) = fM@) < Mlly -2, i=1,2,...,n

Therefore,
~Mly —z[2I = f'(y) - f"(x) = M|y — z|21.

3.1 Exercises

1. Prove Lemma 3.5.



4 Optimality Conditions for Differentiable Functions in R"
Let f(x) be differentiable at &. Then for y € R", we have

fly)=f@)+{f'(@).y —z)+o(ly — zll2),
where o(r) is some function of 7 > 0 such that

lim 10(1") =0, o(0)=0.

r—07r

Let s be a direction in R" such that ||s||2 = 1. Consider the local decrease (or increase) of f(x)
along s:

A(s) = lim = [f(z + as) — f(z)].

a—0
Since f(z + as) — f(z) = a(f'(Z), s) + o(||as||2), we have A(s) = (f'(x), s).
Using the Cauchy-Schwartz inequality —||z|2]|yll2 < (x,y) < ||z|2/ly]2,
As) = (f'(@),8) = ~[If'(@)]|2-
Choosing the direction s = —f'(z)/|| f'(Z)]|2,
, (@) > .
A(s :—<f’:1:, = —||f'(@)].
Thus, the direction —f/(z) is the direction of the fastest local decrease of f(x) at point Z.

Theorem 4.1 (First-order necessary optimality condition) Let * be a local minimum of
the differentiable function f(x). Then

/@) =o.
Proof:
Let «* be the local minimum of f(x). Then, there is » > 0 such that for all y with ||y —x*||2 < r,
fly) = fx").

Since f is differentiable,
fly) = f&") +{f' (@), y — ") +o(lly —z[2) = f(=").
Dividing by ||y — «*||2, and taking the limit y — x*,
(f'(x*),s) >0, VseR" |s|2=1.
Consider the opposite direction —s, and then we conclude that
(f'(z*),8) =0, VseR" |[s]2=1.
Choosing s =e; (i =1,2,...,n), we conclude that f'(x*) = 0. 1

Remark 4.2 For the first-order sufficient optimality condition, we need convexity for the function

f(@).

Corollary 4.3 Let * be a local minimum of a differentiable function f (&) subject to linear equality

constraints
xel:={xecR"| Az =b} #,

where A € R"™*™ b e R™, m < n.
Then, there exists a vector of multipliers A* such that

fl(x*) = ATX".



Proof:
Consider the vectors u; (i = 1,2,...,k) with £ > n —m which form an orthonormal basis of the
null space of A. Then, € L can be represented as

k
x=z(t):=x" + Ztiui, t e R*.

=1

Moreover, the point ¢ = 0 is the local minimal solution of the function ¢(t) = f(x(t)).
From Theorem 4.1, ¢/(0) = 0. That is,

a9
dt;

Now there is t* and A* such that

(0) = (f'(x*),u;)) =0, i=1,2,...,k.

k
Fla®) = tiu + AT,
i=1
Foreachi=1,2,... k,
(f'(x*),u;) =t = 0.

Therefore, we have the result. 1

The following type of result is called theorems of the alternative, and are closed related to duality
theory in optimization.

Corollary 4.4 Given A € R™*" b e R™, ¢ € R", n € R, either

{ <f4’i>:<b77 has a solution « € R", (1)
or
(b,A\) >0
{ ATx=0
or has a solution A € R™, (2)
(b,A) >n
{ ATx=c¢c

but never both

Proof:

Let us first show that if 3z € R" satisfying (1), AX € R satisfying (2). Let us assume by
contradiction that IA. Then (A, Az) = (A, b) and in the homogeneous case it gives 0 = (A, b) > 0
and in the non-homogeneous case it gives n > (¢, x) = (A, b) > 7. Both of cases are impossible.

Now, let us assume that Ax € R" satisfying (1). If additionally Ax € R" such that Ax = b, it
means that the columns of the matrix A do not spam the vector b. Therefore, there is 0 # A € R™
which is orthogonal to all of these columns and (b, A) # 0. Selecting the correct sign, we constructed
a X which satisfies the homogeneous system of (2). Now, if for all  such that Az = b we have
(c,x) > n, it means that the minimization of the function f(x) = (¢, x) subject to Az = b has an
optimal solution &* with f(x*) > 7 (since 3x € R" such that Ax = b, we can always assume that
m < n eliminating redundant linear constraints from the system. If n = m and A is nonsingular,
take A = A~ Tec. Otherwise, we can eliminate again redundant linear constraint to have n > m).
From Corollary 4.3, 3IA € R™ such that ATA = ¢, and (b, \) = (x*, ATA) = (x*,¢) > 1. 1

If f(x) is twice differentiable at € R", then for y € R", we have

fly) = f'(@)+ f"(@)(y — ) + oy — Z[2),

where o(r) is such that lim,_,q ||o(r)||2/r = 0 and o(0) = 0.



Theorem 4.5 (Second-order necessary optimality condition) Let x* be a local minimum of
a twice continuously differentiable function f(x). Then

fllz*)=0, f'(z") = 0.

Proof:
Since &* is a local minimum of f(a), 3r > 0 such that for all y € R™ which satisfy ||y —x*||2 < 7,

fly) = f(x7).
From Theorem 4.1, f’(x*) = 0. Then

fly) = &) + %<f”(w*)(y —a’),y —a) +oly —z|[3) > f(=").

And (f"(x*)s,s) >0, Vs € R" with ||s[|z = 1. |

Theorem 4.6 (Second-order sufficient optimality condition) Let the function f(x) be twice
continuously differentiable on R™, and let x* satisfy the following conditions:

fll")=0, f'(") = O.

Then, * is a strict local minimum of f(x).

Proof:
In a small neighborhood of *, function f(x*) can be represented as:
* 1 * * % *
Fly) = f@) + S @)y — 27),y — ") +ollly — 27[13).

Since o(r)/r — 0, there is a 7 > 0 such that for all » € [0, 7],
T *
o) < Ena("),

where A1 (f”(x*)) is the smallest eigenvalue of the symmetric matrix f”(a*) which is positive. Then

fly) =z f(&") + %Al(f”(w*))lly — a3 + oy — a"[3)-

Considering that 7 < 1, |o(r?)| < r?/4X;(f"(x*)) for r € [0, 7], finally

fy) = f=") + ih(f”(w*))ﬂy — a3 > f(=z).

4.1 Exercises

1. Let f:R® - R, g : R" — R™ continuously differentiable functions and h € R™. Define the
following optimization problem.

minimize  f(x)
subject to  g(x) =h
xeR"

Write the Karush-Kuhn-Tucker (KKT) conditions corresponding to the above problem.

2. In view of Theorem 4.6, find a twice continuously differentiable function on R™ which satisfies
f'(x*) =0, f"(x*) = O, but * is not a local minimum of f(x).

3. Let f : R®™ — R be a continuous differentiable and convex function. If * € R™ is such that
f'(x*) = 0, then show that * is a global minimum for f(x).
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