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Outline of the Lecture

The main focus of this course is on algorithms to solve convex optimization problems which have
recently gained some attention in continuous optimization. The course starts with basic theoretical
results and then well-known algorithms will be analyzed and discussed.

Purpose of the Lecture

Algorithms to solve large-scale convex optimization problems have been recently an important topic
in continuous optimization. This lecture intends to provide basic mathematical tools to understand
these algorithms focusing on computational aspects when solving large-scale problems.

Plan of the Lecture (tentative)

1. Convex sets and related results

2. Properties of Lipschitz continuous differentiable functions

3. Optimality conditions for differentiable functions

4. Complexity analysis of algorithms for minimizing unconstrained functions

5. Properties of convex and differentiable convex functions

6. Worse cases for gradient based methods

7. Steepest descent methods for differentiable convex and differentiable strongly convex functions

8. Accelerated gradient methods
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complexity.

Evaluation

Final exam and/or reports.
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1 Convex Sets

Example 1.1 Examples of convex sets.

Definition 1.2 We define as a polyhedron the set which can be represented as an intersection of
finitely many closed half spaces of Rn. Due to exercise 2, polyhedra are convex sets.

Definition 1.3 A point y ∈ Rn is said to be a convex combination of x1,x2, . . . ,xm ∈ Rn if
there exists non-negative λ1, λ2, . . . , λm ∈ R such that

∑m
i=1 λi = 1 and y =

∑m
i=1 λixi.

Example 1.4 Given x0,x1, . . . ,xm ∈ Rn, m+1 distinct point of Rn (m ≤ n) such that x1−x0,x2−
x0, . . . ,xm −x0 are linear independent, the set formed by all convex combination of x0,x1, . . . ,xm

is called an m-simplex in Rn.

Theorem 1.5 A subset of Rn is convex if and only if it contains all the convex combinations of its
elements.

Proof:
⇐ Trivial.
⇒ Let us show by induction on the number of elements m. For m = 2, it follows from the

definition of convexity. Let us assume that the claim is valid for any convex combination of m or
fewer elements. Consider x1,x2, . . . ,xm+1 elements of the set and λ1, λ2, . . . , λm+1 ≥ 0 such that∑m+1

i=1 λi = 1. If λm+1 = 0 or λm+1 = 1, it falls in the previous cases. Therefore, let 0 < λm+1 < 1.

Then
∑m+1

i=1 λixi =
(∑m

j=1 λj

) ∑m
i=1 λixi∑m
j=1 λj

+ λm+1xm+1 = (1 − λm+1)
∑m

i=1
λi∑m

j=1 λj
xi + λm+1xm+1

belongs to the set due to the induction hypothesis and definition of convexity.

Definition 1.6 The intersection of all convex sets containing a given set S ⊆ Rn is called convex
hull of S and is denoted by hull(S). Therefore, hull(S) is convex.

The following theorem shows that a hull(S) can be constructed from the convex combination
consisting only by its elements.

Theorem 1.7 The convex hull of S ⊆ Rn, hull(S), consists of all convex combinations of elements
of S.

Proof:
Let B be the later set. If y1,y2 ∈ B, then ∃ℓ,m ∈ N, a1,a2, . . . ,aℓ, b1, b2, . . . , bm ∈ S, and non-

negative α1, α2, . . . , αℓ, β1, β2, . . . , βm ∈ R such that y1 =
∑ℓ

i=1 αiai, y2 =
∑m

j=1 βjbj ,
∑ℓ

i=1 αi = 1,

and
∑m

j=1 βj = 1. Then for 0 ≤ λ ≤ 1, λy1 + (1 − λ)y2 =
∑ℓ

i=1 λαiai +
∑m

j=1(1 − λ)βjbj with

λαi, (1 − λ)βj ≥ 0,
∑ℓ

i=1 λαi +
∑m

j=1(1 − λ)βj = 1. Therefore, B is convex. It is also clear that
S ⊆ B, and therefore, hull(S) ⊆ B. From Theorem 1.5 the convex set hull(S) must contain all
convex combinations of elements of S. Hence B ⊆ hull(S).

Theorem 1.8 (Carathéodory’s Theorem) Let S ⊆ Rn. If x is a convex combination of ele-
ments of S, then x is a convex combination of n+ 1 or fewer elements of S.

Proof:
Let x =

∑m
i=1 αixi, xi ∈ S, αi ≥ 0,

∑m
i=1 αi = 1. We will show that if m > n + 1, then x can

be written as a convex combination of m− 1 elements of S. Therefore, suppose that all 0 < αi < 1.
Since m− 1 > n, ∃β1, β2, . . . , βm−1 ∈ R not all zeros such that

β1(x1 − xm) + β2(x2 − xm) + · · ·+ βm−1(xm−1 − xm) = 0.
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Define βm = −
∑m−1

i=1 βi. Then

m∑
i=1

βi = 0 and
m∑
i=1

βixi = 0.

Since 0 < αi < 1, ∃γ > 0 such that δi := αi − γβi ≥ 0 (i = 1, 2, . . . ,m) and only one δi, say δj = 0.
Then

x =

m∑
i=1

αixi =

m∑
i=1

δixi +

m∑
i=1

γβixi =

m∑
i=1,i̸=j

δixi,

and δi ≥ 0 (i = 1, 2, . . . ,m),
∑m

i=1 δi =
∑m

i=1 αi − γ
∑m

i=1 βi = 1.
We can do this procedure whenever m > n+ 1.

Proposition 1.9 If C1 and C2 are convex sets in Rn, then so is their sum:

C1 + C2 := {x1 + x2 ∈ Rn | x1 ∈ C1, x2 ∈ C2}.

Proposition 1.10 The product of a convex set in Rn, C with a scalar α ∈ R:

αC := {αx ∈ Rn | x ∈ C}

is a convex set.

1.1 Exercises

1. Show that the set of n× n symmetric and positive definite matrices is a convex set.

2. Show that the intersection of an arbitrary collection of convex sets is a convex set.

3. Show that the closed ball centered at x̄ ∈ Rn, {x ∈ Rn | ∥x− x̄∥ ≤ ε}, with ε > 0 is a convex
set.

4. Show that the interior of a convex set is a convex set.

5. Show that the closure of a convex set is a convex set.

6. Show that the convex hull of a set S ⊆ Rn is the unique and the smallest convex set containing
S.

7. Prove Proposition 1.9.

8. Find an example where the sum of two closed sets is not a closed set.

9. Prove Proposition 1.10.

2 Separation Theorems for Convex Sets

The separation theorem for convex sets can be proved using the Farka’s Lemma. Here, we follow
[Bertsekas] and use a geometric fact of (orthogonal) projection to a convex set.

Proposition 2.1 Let C ⊆ Rn a convex set and x̂ ∈ Rn be a point that does not belong to the
interior of C. Then there exists a vector d ̸= 0 such that

dTx ≥ dT x̂, ∀x ∈ C.
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Proof:
Since x̂ ̸∈ int(C), there is a sequence {xk} which does not belong to the closure of C, C̄, and

converges to x̂. Now, denote by p(xk) the orthogonal projection of xk into C̄ by a standard norm.
One can see that by the convexity of C̄ [Bertsekas]

(p(xk)− xk)
T (x− p(xk)) ≥ 0, ∀x ∈ C̄.

Hence,

(p(xk)−xk)
Tx ≥ (p(xk)−xk)

T p(xk) = (p(xk)−xk)
T (p(xk)−xk)+(p(xk)−xk)

Txk ≥ (p(xk)−xk)
Txk.

Now, since xk ̸∈ C̄, calling dk = p(xk)−xk

∥p(xk)−xk∥ ,

dT
k x ≥ dT

k xk, ∀x ∈ C̄.

Since ∥dk∥ = 1, it has a converging subsequence which will converge to let us say d. Taking the
same indices for this subsequence for xk, we have the desired result.

Theorem 2.2 (Separation Theorem for Convex Sets) Let C1 and C2 nonempty non-intersecting
convex subsets of Rn. Then, ∃d ∈ Rn, d ̸= 0 such that

sup
x1∈C1

dTx1 ≤ inf
x2∈C2

dTx2.

Proof:
Consider the set

C := {x2 − x1 ∈ Rn | x2 ∈ C2, x1 ∈ C1}

which is convex by Propositions 1.9 and 1.10.
Since C1 and C2 are disjoint, the origin 0 does not belong to the interior of C. From Proposi-

tion 2.1, there is d ̸= 0 such that dTx ≥ 0, ∀x ∈ C. Therefore

dTx1 ≤ dTx2, ∀x1 ∈ C1 and x2 ∈ C2.

Finally, since both C1 and C2 are nonempty, it follows the result.

3 Lipschitz Continuous Differentiable Functions

Hereafter, we define for a, b ∈ Rn, the standard inner product ⟨a, b⟩ :=
∑n

i=1 aibi, and the associated
norm to it ∥a∥2 :=

√
⟨a,a⟩.

Definition 3.1 Let Q be a subset of Rn. We denote by Ck,p
L (Q) the class of functions with the

following properties:

• Any f ∈ Ck,p
L (Q) is k times continuously differentiable on Q;

• Its pth derivative is Lipschitz continuous on Q with the constant L ≥ 0:

∥f (p)(x)− f (p)(y)∥2 ≤ L∥x− y∥2, ∀x,y ∈ Q.

Observe that if f1 ∈ Ck,p
L (Q), f2 ∈ Ck,p

L (Q), and α, β ∈ R, then for L3 = |α|L1 + |β|L2 we have

αf1 + βf2 ∈ Ck,p
L3

(Q).

Lemma 3.2 Let f ∈ C2(Rn). Then f ∈ C2,1
L (Rn) if and only if ∥f ′′(x)∥2 ≤ L, ∀x ∈ Rn.
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