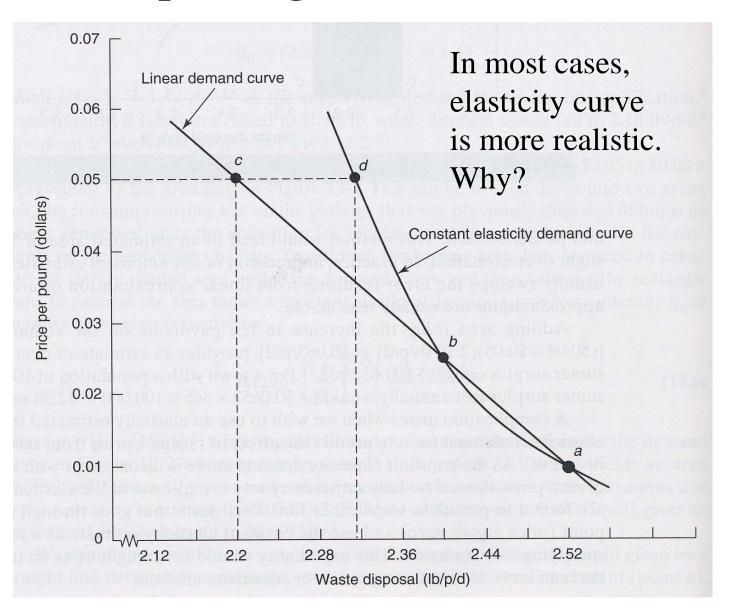

Chapter 13 Valuing Impacts from Observed Behavior: Direct Estimation of Demand Curves

Constant Elasticity Demand Curve

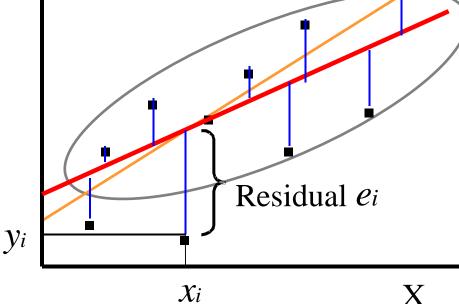
Price



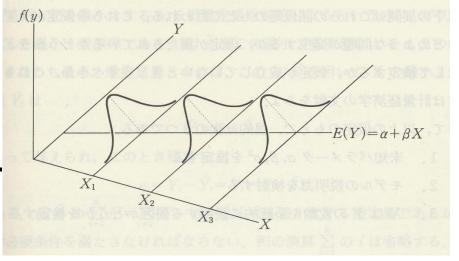
Quantity

$$q = \beta_0 p^{\beta 1}$$

Extrapolating from Observations


Econometric Estimation

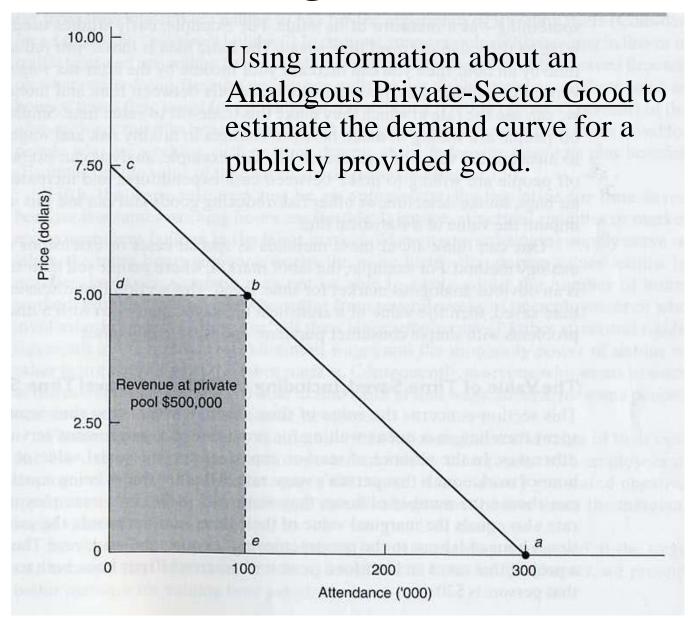
$$q = \propto_0 + \propto_1 p + \propto_2 I + \propto_3 T + \epsilon$$


q: explained (dependent) variables

p, I, T: explanatory (independent) variables

Y Ordinary Least Square (OLS) method $\hat{y}_i = \alpha + \beta x_i$

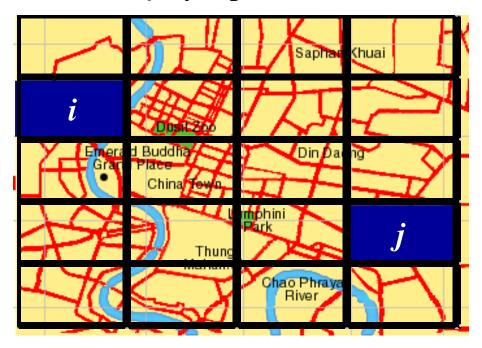
$$e_i = y_i - \hat{y}_i$$
 Minimize $\sum e_i^2$



Chapter 14 Valuing Impacts from Observed Behavior: Indirect Market Methods

Observed Behavior = Revealed Preference ◆ → Stated Preference

- 1. Market Analogy Method
- 2. Trade-off Method (Value of Time Saved, Value of Statistical Life)
- 3. Intermediate Good Method
- 4. Hedonic Pricing Method
- Travel Cost Method


Analogous Good

How to estimate Value of Time (VOT)? Case of Transport Project

Generalized Cost

is an amount of money representing the overall disutility (or inconvenience) of traveling between origin i and destination j by a particular mode.

Zoning

Origin i

Destination *j*

Components of Generalized Cost

```
Public Transport
  Fare, Giving up time, .....
Car
 Giving up time,
 Toll Charge,
 VOC (Vehicle Operating Costs):
    Fuel, Oil, Tire & Tube, Maintenance and Depreciation
```

Other components?

Market in Transport Service

Price = Generalized Cost

WTP is the maximum amount of money that a user would be willing to pay to make a trip. (can be interpreted as a maximum generalized cost that they are prepared to accept a trip)

Generalized Cost Function

$$GC = \alpha T + \beta L$$

GC: generalized cost by transport mode [yen/vehicle]

α : value of time [yen/ vehicle*minute]

β : vehicle operation cost or fare by transport mode [yen/ vehicle*km]

T : average travel time by transport mode [minute]

L: travel distance by transport mode [km]

How to improve society by transport projects

> Reduce Generalized Cost e.g. time saving, accidents reductions

Measurement of "Value of Time"

1) Resource value,

based on Opportunity Cost (Trade-Off Method)

The value of what one gives up to get something

- a) Average (expected) gross wage rate (per hour)
- b) National annual income data (instead of gross wage rate) ex. VOT = GDP / number of employment / working time
- 2) Behavioral value, based on Generalized Cost Function

$$Utility = GC = -0.147TW-0.0411TT-2.24C$$
 [U/min] [U/\$] (estimated by mode choice model)

$$VOT = 0.0411 *60mins/ 2.24$$

= 1.10 US\$/ hr / person

Note: Utility for Commuting

Mode choice for commuting:

travel time, waiting time, fares, comfort....

$$U(x_1, x_2,...x_n) = \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$
 β_1, β_2 : parameters

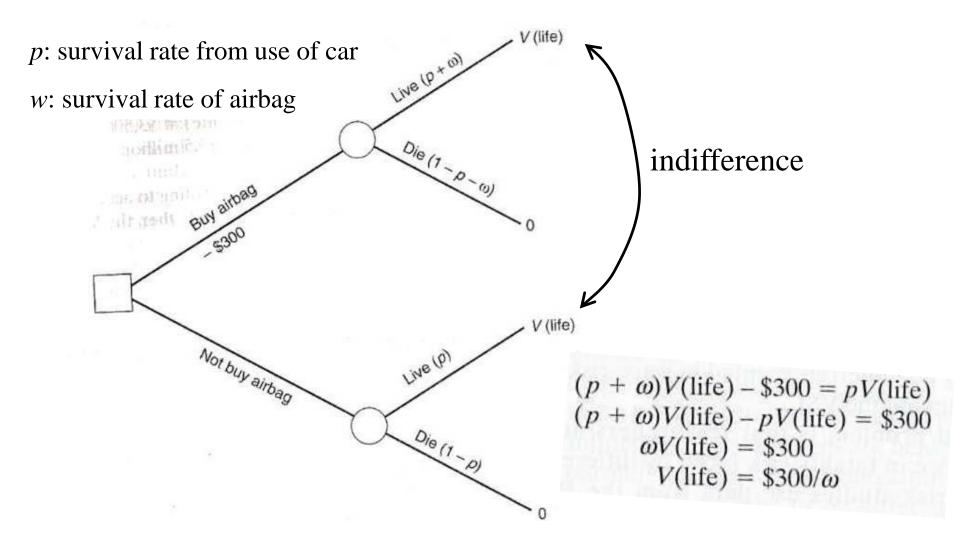
The economic characteristics of transport

Derived nature of the demand

- benefit to travel as short as possible
- "joy riders", "tourists" to be in the minority

Mode choice model bus or car

$$U = -0.147TW - 0.0411TT - 2.24C$$


TW: access time (total walking time to and from bus or car)

TT: total time of trip

C: total cost of trip

* Daniel McFadden (1975) Urban Travel Demand, North-Holland He was awarded the Nobel Prize in Economics in 2000.

The Value of a Statistical Life - Simple Consumer Purchase Studies -

The Value of a Statistical Life

Forgone Earnings Method

The value of a life saved = Persons discount future earnings
Used by the courts. However, many problems exist.
e.g. It ignores individual's WTP to reduce the risk of their deaths

Simple Labor Market Studies

Two indifferent supposition for job fatality risk $(\underline{1/1,000})$ V(life) = \$3,500. Then, V(life) = \$3.5 million Greater chance Riskier job of fatal injury offers

- * People overestimate the occurrence of low-probability *bad* event: e.g. radiation contamination, Ebola hemorrhagic fever.
- * Risk seeking e.g. Mercenary

Intermediate Good Method

To value "education and training programs" as human capital.

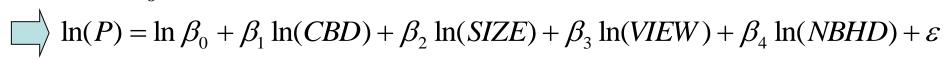
Annual Benefit = Income (with project) – Income (without project)

Asset Valuation Method

Project affect the prices of assets (e.g. land, housing, stocks, etc). The impacts are said to be *capitalized* into the market value of the assets. Observed increase (or decrease) in asset values can be used to estimate the benefits (costs or disbenefits) of projects.

Hedonic Pricing Method

Problems with Simple Valuation Methods


- 1. Omitted Variable Problem
- 2. Self-Selection Bias
- > Hedonic Pricing Method overcome these two problems.

Hedonic Pricing Method = Hedonic Regression Method

Hedonic Price Function
$$P = f(CBD, SIZE, VIEW, NBHD)$$

(marginal) hedonic price, implicit price, rent differential of the attribute

$$P = \beta_0 CBD^{\beta 1} SIZE^{\beta 2} VIEW^{\beta 3} NBHD^{\beta 4} e^{\varepsilon}$$

House price (P) Hedonic price = r_{V_2} Hedonic price function Level of scenic V3 V2 VI view (V) Hedonic price of scenic Locus of household views (rv) equilibrium W_1 willingnesses-to-pay W_2 TV1 W₃ rvo rv3 Level of scenic V2 view (V)

Hedonic price of scenic views: Slope

$$r_v = \beta_3 \frac{P}{VIEW}$$

Decreases as the level of the scenic view increases

$$r_{v} = W(VIEW, Y, Z)$$

Y: household income

Z: household characteristics

Value of Statistical Life

Nonlinear Regression Model

$$\ln(wagerate) = \beta_0 + \beta_1 \ln(fatality \ risk)$$

$$+ \beta_2 \ln(injury \ risk)$$

$$+ \beta_3 \ln(job \ tenure)$$

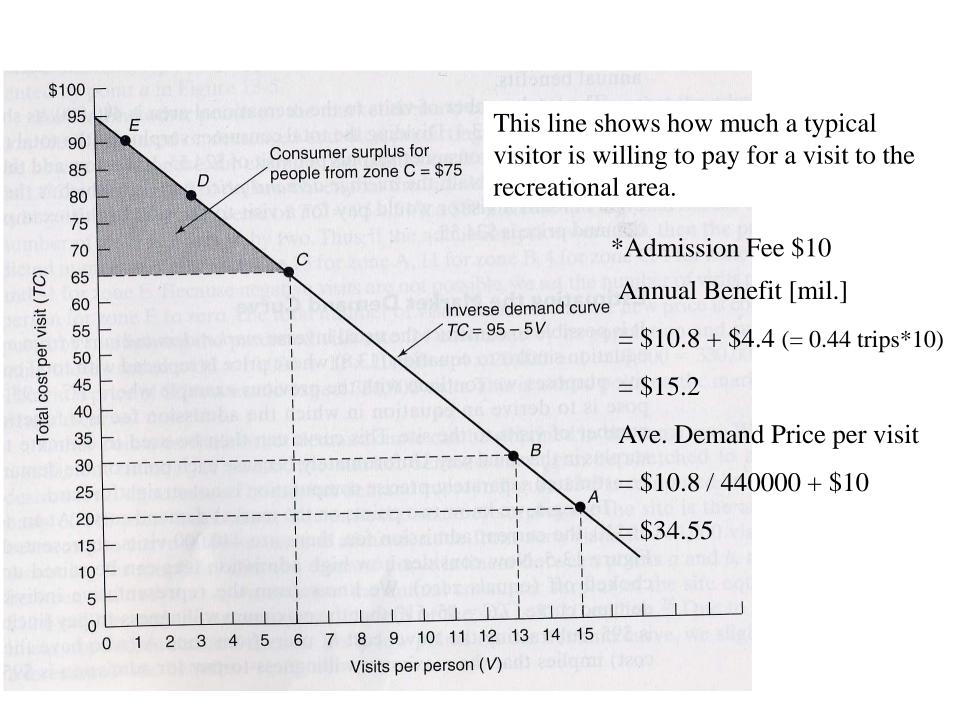
$$+ \beta_4 \ln(education)$$

$$+ \beta_5 \ln(age) + \varepsilon$$

Travel Cost Method

To value "Recreational Sites"

Zone Travel Cost Methods


$$\ln(\frac{V}{POP}) = \beta_0 + \beta_1 \ln \overline{p} + \beta_2 \ln \overline{p}_s + \beta_3 \ln \overline{Y} + \beta_4 \ln \overline{Z} + \varepsilon$$

Zone	Travel Time (hours)	Travel Distance (km)	Average Total Cost per Person (\$)	Average Number of Visits per Person	Consumer Surplus per Person	Consumer Surplus per Zone (\$ thousands)	Trips per Zone (thousands)
A	0.5	2	20	15	525	5,250	150
В	1.0	30	30	13	390	3,900	130
C	2.0	90	65	6	75	1,500	120
D	3.0	140	80	3	15	150	30
E	3.5	150	90	1	0	0	10
Total		T 284 T 13	STANDED T	Marie Tour	GAR HELD	10,800	440

Different value of time for estimating average total cost:

A for \$9.40/hr, B for \$5.50/hr, C for \$10.35/hr, D and E for \$8/hr (as wage rate)

Total cost is generally composed of driving, parking, walking and loading and unloading vehicles. Zone E needs customs and immigration crossing the border.

Presentation & Report

- 1. Select one method of Valuing Market or Non-Market Goods from Chapter 9, 13, 14, 15 and 16.
- 2. Find one paper from **any international scientific peer-reviewed journals** published after the year 2000 (should not be a conference paper and/or report) from any research fields in using the selected method.
- 3. Present your selected paper in 8 minutes by powerpoint or pdf.

Report Submission

Deadline: 3rd August 2015, 1 pm

Summarize 4 pages report and submit by email to my secretary,

Ms Hattori. (hattori.n.ad@m.titech.ac.jp):

- 1) Reasons to select this paper.
- 2) Advantages and disadvantages of your selected method in the context of your selected topic. Discuss whether other methods are possible to apply for the selected topic.
- 3) Respond some questions by me if you need.
- 4) Impression (comments, requests, etc) of this course.