

電界効果トランジスタの特性	
(Gradual Channel Approximation)	
半導体界面の電荷	← L → ŹW
$Q = C(V_{\rm G} - V_{\rm T})$	半導体・、 ソース ドレイン
電圧 (x)はxだけで決まる	絶縁層 $V_{G} \downarrow $ ゲート $A_{V_{D}}$
$\boldsymbol{Q}(\boldsymbol{x}) = \boldsymbol{C}(\boldsymbol{V}_{\mathrm{G}} - \boldsymbol{V}_{\mathrm{T}} - \boldsymbol{V}_{\mathrm{T}}))$	
$\sigma = ne\mu$ において <i>netiQ</i> (x)に相当 電場は $E_x = -dV(x)/dx$ なので	
$I_D = WQ(x)\mu(-dV(x)/dx)$	V VD
Q (x)を入れて積分すると	
$\int_{0}^{L} I_{D} dx = \int_{0}^{V_{D}} WC\mu (V_{G} - V_{T} - V(x)) dV$	
I _D はどこでも一定なので、積分を実行	行して
$I_{D} = C\mu \frac{W}{L} [(V_{G} - V_{T})V_{D} - \frac{1}{2}V_{D}^{2}]$	

