

1950 +	(TMTSF) ₂ PF ₆ :最初の有機超伝導
有機半導体	$/ T_{c}$ =1.4 K (6.5 kbar) D. Jérome, K. Bechgaard 1980
	(TMTSF) ₂ ClO ₄ :常圧有機超伝導体 T _c =1.4 K 1981
	///(BEDT-TTF)2ClO4(TCE):2次元有機伝導体
	// G. Saito, T. Enoki, H. Kobayashi
ボリアセチレン 1970 + (TTF)(TCNQ)	$(BEDT-TTF)_2 ReO_4 = T_c = 2 K (4 kbar) = 1983$
	β -(BEDT-TTF) ₂ I ₃ T_c =1.5 K \rightarrow T_c =8 K (1.2 kbar)
有機超伝導 1080	Yagubskii 1984 Murata, Laukhin 1985
TMTSF BEDT-TTF [Ni(dmit) ₂]	θ-(BEDT-TTF) ₂ I ₃ , κ-(BEDT-TTF) ₂ I ₃ H. Kobayashi
	κ -(BEDT-TTF) ₂ Cu(NCS) ₃ T _c =10.4 K
Fermiology 1990	H. Urayama, G. Saito 1987
統一的相図	κ -(BEDT-TTF) ₂ Cu[N(CN) ₂]Br T _c =11.6 K κ-(BEDT-TTF) ₂ Cu[N(CN) ₂]Cl T _c =12.8 K (0.3 kbar)
電荷整列 磁場誘起超伝導 2000	J. M. Williams 1990
	β - (BEDT-TTF) ₂ ICl ₂ T_c =14 K (82 kbar)
	Taniguchi, 2003

-05

開いたフェルミ面のため8 Kで

CDW or SDWになる。

1X

₩Ħ

温度

Temperature (K)

κ塩の絶縁相は1/4-filledで二量化が強い状態でのモット絶縁相(低温で反強 磁性絶縁相)である。超伝導は(銅酸化物の高温超伝導同様)モット絶縁相の 近傍に出る。おどらく反強磁性相関が超伝導のペア生成に効いている。

バンド構造は一次元的。HOMOとLUMOが左右の配位子の位相を逆にした ようなものであるため、エネルギーレベルが近く、二量化の大きいPd錯体 ではフェルミ面がHOMOバンドに来る。

