

i	\面体	已位Oha	つ場合			high s	spin			
eg				+	<u>+</u> †	<u>+</u> †	++ •	<u>+</u> 1	₩- 1	μti
	g 1			ţ††	ŧ ‡Î	ŧ ţî Î		ţţţÎl		ţţţŢŢ
	d ¹	d²	d ³	d4	d5	de	d7	d ⁸	d ⁹	d ¹⁰
S =	1/2	1	3/2	2	5/2	2	3/2	1	1/2	0
	Ti ³⁺	Ti 2+	Cr ³⁺	Cr ²⁺	Fe ³⁺	Fe	²⁺ Co ²⁺	Ni ²	+ Cu ²	+ Zn ²⁺
	V ⁴⁺	V ³⁺	Mn ⁴⁺	Mn ³	+ Mn²	+ Co	³⁺ Ni ³⁺			Cu+
				Ti ⁰	V ⁰	Cro	Mn ^o	Fe	Co ^o	Ni ^o
				4	-5	6	7	8	9	10
d =	4~77	に結晶	晶場がフ	ント則	より強	いと下	のよう	tð low s	spin状類	き となる。
温度	を変える	るとhig	h spin					[Fe"(phen)	2(NCS)2]
から	ow spi	nに転信	する						47	
Spin	crosso	ver	•	ŧ₽	ŧŧ₩		h tt	χI		b n
特に	こすでは	磁性体	か	d 4	d5	d6	d7		spin	high spin
非磁	対性にな	53.	S=	- 1	1/2	0	1/2		Spill)	'
				-		Ť				7

2		i	.	≜ ‡ I	↓ ↓↓	↓ ↓I	ti	
e ∔	_	4	_	#	+ ‡‡	ŧŧŧŧ	t ‡‡‡	tititi ⊥
d ¹	d² 1	d ³ 3/2	d ⁴ 2	d ⁵ 5/2	d ⁶ 2	d ⁷ 3/2	d ⁸ 1	d ⁹ 1/2
∆の大き < Br ∢ < NC	さの順 < Cl- < :S - 〜	镭:分 F- < O NH ₃ <	光化学系 H ⁻ < H ₂ (en < ph	列 0 1en <	CN-	強入	N	O F I 弱
∆の大き I < Br < < NC 例えばF 練習 %	さの順 < CI- < :S - 〜 eCl ₄ たの錯(番:分: F- < O NH ₃ < ではFe ³ 本のスピ	光化学系 H- < H ₂ (en < ph +なのでF こンを求め	列 O nen < e ⁰ のd ⁸)よ。	CN [.] から37	強く	. d ⁵ , & -	O F I 弱 って <i>S</i> =5/2
∆の大き I < Br < <nc 例えばF 練習 % MnC</nc 	さの順 < CI- < :S · 〜 eCl ₄ -1 たの錯体 Cl ₄ ²⁻ 〔	番:分: F- < O NH ₃ < ではFe ³ 本のスピ	光化学系 H ⁺ < H ₂ (en < ph ⁺ なのでF こンを求め MnC	列 D nen < e ⁰ のd ⁸)よ。 D ₄ - (CN [.] から37)	強 を引いて CuCl	N . d ⁵ , & . 4 ²⁻ (○ F I 弱 うて <i>S</i> =5/2

低次元ゆらぎ	
ー次元磁性体は不可能である。(Landau, Lifshitz	統計物理学 最終節)
ー次元強磁性体(長さ <u>/原子</u>)に <i>n</i> 個の界面があると の統計的重率は _{W=}	
$\ln W = L \ln L - (L - n) \ln (L - n) - n \ln n$	加固の界面
$= L \ln \frac{L}{L-n} + n \ln \frac{L-n}{n} \approx -n \ln \frac{n}{L} \qquad n < < L$	より第1項~0
自由エネルギーは $G = G_0 - TS + nJ = G_0 + k_B T n$	$\ln \frac{n}{L} + nJ$
実現される	L
$\frac{\partial G}{\partial n} = k_{\rm B} T \ln \frac{n}{L} + J (=0)$	æ
n/ Lが小さいときln(n/L)は負の大きい値だからn	~ 0の近く て、<0
したがってnが増加するとGは減少する。よって有	限の <i>n</i> ≠0 ⁰
に 60 最小値がある。	
有限温度 T≠0では一次元強磁性体には界面がどん	どん入ってしまい、
磁気秩序(long range order)はできない。 強磁性!	こ限らない。
多次元になって配位数が大きくなり」の損が大きく	、なればこうならない。

	AUH上にいる H-H+イオン性		BO H+	H上にいる H-イオン性	
		1 +	- (1)		
分子軌i これは 互いにi	道法ではイオン 他の電子の影響 壁けあう効果(電	性の寄与が を平均場近(雪子相関elect	50%もあり、 はでならして fron correla	明らかに遇 しまったた ation)が入っ	大である。 め、電子が っていないため。
原子	価結合法Valenc	e Bond The	ory (Heitler	Lindon法)	
4	の代わりに	$\Psi = \chi_{A}(1)$	$\mathbf{x}_{\mathbf{B}}(2) + \mathbf{x}_{\mathbf{B}}(1)$	1) x _A (2) ²	を使う。
固体にな 電子	あける電子相関 が1個ずつつま - ↓- ↓-	った状態で	エネルギー/	ベンドを考え	: 3C
固体にる 電子 ・ Motti	たける電子相関 が1個ずつつま - ↓- ↓-	った状態で. half-fil	エネルギー/ = led band	ベンドを考え 金属	3C
固体にる 電子 ・ ・ ・ ・ ・ ・ ・ ・	たける電子相関 が1個ずつつま - ↓ ↓ ● ●線体 exp (<i>E_a/ k_B T</i>)	った状態で half-fil	エネルギー/ = led band	 ベンドを考え 金属 ρ ∝ 7 磁性ない 	
固体にな 電子 ↓ Mott µ 磁性 4 × =	たける電子相関 が1個ずつつま ・ ・ や緑体 $exp(E_a/k_BT)$ S(Curie-Weiss $C(T - \theta)$	った状態で half-fil いい いい いた いた いた に いた いた いた いた いた いた いた いた いた いた い い い い	エネルギー/ = led band	ベンドを考え 金属 ρ ∝ 7 磁性なし X = -1	とると (Pauli常磁性) 定
固体にな 電子 ・ ・ Motti p∝ 磁性体 x = 局在((たける電子相関 が1個ずつつま ・ や緑体 $exp(E_a/k_BT)$ $s(Curie-Weissc/(T - \theta)ocarized)$	った状態で half-fil い い い い い い に 、 に 、 に 、 に 、 に 、 、 に 、 、 、 、	エネルギー/ = led band	 、ンドを考え 金属 ρ∝ T 磁性なし x = -1 非局在(通 	i ると (Pauli常磁性) 定 i歴性ifineranf)
固体にでで、 電子 Motti の 磁性体 x = 局在(ル イオン 原子(い)	たける電子相関 が1個ずつつま ・ (個ずつつま を線体 $exp(E_a/k_BT)$ (Curie-Weiss $C(T - \theta)$) ocarized) ・性の寄与小 話会法的	った状態で half-fil いい いい いい いい いい いい いい いい いい いい いい いい いい	エネルギー/ = led band	(ンドを考え) 金属	aると (Pauli常磁性) 定
固体になる 電子 単 Mott の ∝ 磁性体 X = 局在(ル イオン 原子値 電子	たける電子相関 が1個ずつつま 一十二十 絶縁体 $exp(E_a/k_BT)$ (Curie-Weiss $C/(T - \theta)$ ocarized) ~性の寄与小 結合法的 よるポテンシャ	った状態で half-fil 別) 縦 脚 料 ど ど	エネルギー/ = led band	 × ドを考え 金属	aoと (Pauli常磁性) 定 ■歴性ifinerant) の寄与大 法的 soポテンシャル
国体にな 電子 () () () () () () () () () () () () ()	たける電子相関 が1個ずつつま 一一一一 絶縁体 exp(E_a/k_B) (Curie-Weiss $C/(T - \theta)$) ocarized) 性の寄与小 結合法的 よるポテンシャ -> 運動エネルキ	った状態で half-fil 別) 解 別 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	エネルギー/ led band 温度 温度	 ベンドを考え 金属 ρ ∝ T 磁性なし 水目の 北局在(近 分子軌道 マーク マーク ボーマ 	aoと (Pauli常磁性) 定
 固体にる 電子 電子 Motti の ペ 磁性(A) x = 局在(I) イオン 原子値 エネルギー 電子密度小 電子の重 	ホける電子相関 が1個ずつつま 「個ずつつま 「一一一一一 「個ずつつま 「一一一一」 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「個ずつつま 「「「」」 「「個ずつつま 「「「」」 「「個ずつつま 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「」」 「「」」 「」」」 「」」 「」」」 「」」 「」」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」」 「」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」 「」」 「」」 「」」」 「」」」 「」 「	った状態で half-fil い い い ド ー	エネルギー/ = led band 温度 温度	 (ンドを考え) 金属 ρ ∝ 7 磁性 7 磁性 2 ボー 7 取合し 1 ホーマー ホーマー ホーマー 電子 電子 ホーマー ホーマー	aoと (Pauli常磁性) 定

 $\Psi = (\chi_{A}(1) + \chi_{B}(1))(\chi_{A}(2) + \chi_{B}(2))(\alpha(1)\beta(2) - \alpha(2)\beta(1))$

Slater行列式にするとスピン部分のみ反対称→一重項→この部分は無視

分子軌道法における電子相関

いる(右図)ので、分子全体では

水素分子では結合軌道に2電子が入って

 $H_2 \quad \alpha - \beta \quad \underline{\qquad} \quad \psi = \chi_A - \chi_B$

 $\alpha + \beta + \psi = \chi_{\rm A} + \chi_{\rm B}$

配置間相互作用 Cl (configur	ation interaction)	反結合·	— <u>†</u> ↓
分子軌道法で電子相応の容与れたのの記状態の容与れ	関を取り入れる を線形結合	結合・	† <u>↓</u>
$\Psi = \Psi_1 + c \Psi_2$		Ψ =	$\Psi_1 + c \Psi_2$
$= (\chi_{A}(1) + \chi_{B}(1))$	$(\chi_{\rm A}(2) + \chi_{\rm B}(2)) + c$	$(\chi_{\rm A}(1) - \chi_{\rm B}(1))$))($\chi_{\rm A}(2) - \chi_{\rm B}(2)$)
$= (1+c)(\chi_{A}(1)\chi_{A}(2))$	$(1) + \chi_{B}(1) \chi_{B}(2) + (1)$	$-c)(\chi_{A}(1)\chi_{B})$	$(2) + \chi_{B}(1) \chi_{A}(2))$
17	ン性	共有結合'	性
 c=-1とすると原子 c=0とするとイオン エネルギー最小にな 	・価結合法と同様、(・ ・性50%の通常の分子 るように <i>で</i> を決める。	イオン性)=0 -軌道法 (-1 < <i>c</i> <0)
分子軌道計算でも励	起状態を求めるため	にはCl計算を	行なう。
	量子化学		固体物理
	分子軌道法→電	子相関なし	=バンドモデル

<i>し</i> がバンドの形を変え	ないと近似すると	
$E_{\uparrow} = 2t \cos ka$	1個目の電子のバ	ンド
$E_{\downarrow} = 2t\cos ka + U$	2個目の電子のバ	ンド
(1) <i>F</i> < <i>U</i>		
↑と↓のエネルギー 分裂する。	-バンドが <i>U</i> 程度	upper Hubbard band
<i>U>W</i> だとHubbard g half-filledだと絶縁 <i>UNW</i> を越えるのがI	apができ、 <mark>Hubbar</mark> a 体になる。 Mott転移。	
lower Hubbard ban しか電子が入らない	dには1個まで 1。(通常は2個)	lower Hubbard band
スピンの向きはラン いずれ低温で反強磁	・ダム(常磁性)でよい。 弦性になる。	
ubbard model #half -fi	illedの場合のみ絶縁体	を与える。(他はすべて金属。)

磁気相互作用」の起源	
2-サイト 2-電子のハバ	ベードモデル 4C2=6 状態
$\begin{array}{c c} \hline 2 & & \\ \hline 3 & & \\ \hline \end{array} \begin{array}{c} t \\ \hline 0 \\ t \end{array} \begin{array}{c} t \\ \hline 0 \\ t \end{array}$	$\begin{vmatrix} t & 0 \\ -E & t \end{vmatrix} = 0 \qquad E = 0,0$
$\begin{array}{c c} \bullet \bullet$	$\begin{vmatrix} L & l \\ t & U - E \end{vmatrix}$
電子を1個飛ばすと	こ ④は <i>し</i> だけ エネルギーが高い
これを解くと	
$\left -E - 2t\right = 0$	$\left -E\right = 0$
$\begin{vmatrix} 2t & U-E \end{vmatrix}^{-0}$	$\begin{vmatrix} 0 & U-E \end{vmatrix}$
$E = \frac{U \pm \sqrt{U^2 + 16t^2}}{2}$	$E=0,U$ ただし $E=0の解は \Psi=rac{(1-2)}{\sqrt{2}}$ のように
	反対称なのでトリプレットに入っていく。

Coulomb repulsionは本来∝ 1/rで、on-siteのみではない。 距離をボーア半径(0.52 Å)単位で表して逆数→Hartree単位(26.6 eV)のV

	電気抵抗率	静磁化率 (SQUID)	スピン磁化率 (ESR)	X線散乱
電荷密度 波(CDW) Peierls 転移)	P 絶縁体 金属 T _{MI} :→T	<i>χ</i> • 非磁性絶縁体	χ_s は同左 線幅は $T_{\rm MI}$ で連続 $\chi \propto \frac{1}{k_{\rm B}T(3+e^{E_g/k_{\rm B}T})}$	2k _F の長周期 > T _{MI} 散漫散ま <t<sub>MIスポット</t<sub>
スピン 密度波 (SDW)		反強磁性絶縁体 χ χ_{\perp} $\chi_{\prime\prime}$ T_{MI} T	 線幅は発散 強度 予T 	なし は0へ
モット 絶縁体・ 電荷整列	P ● 絶縁体 金属 T _{MI} : T	x↑ ^{常磁性絶縁体} T _{MI} : T	χ _s は同左 線幅はT _{MI} で連続 通常さらに低温でSD spin-Peierlsのどちらか	モット:なし 電荷整列: 長周期 Wか が起こる。
Spin- Peierls 転移	 P 全温度域で 絶縁体 T 		χ_s は同左 線幅は T_{MI} で連続 CDW同様 singlet-triplet mode	2k _F の長周期

