# Basic Mathematics 

Norimasa Kobayashi @ Tokyo Institute of Technology

## 1 Logic

$\wedge$ denotes "and"
$\checkmark$ denotes "or"
$\neg$ denotes "not"
$p \Rightarrow q$ denotes "if $p$ then $q$ "
$p \Leftarrow q$ denotes "if $q$ then $p$ "
$p \Leftrightarrow q$ is defined by $(p \Rightarrow q) \wedge(q \Leftarrow p)$ and is read " $p$ if and only if (iff) $q$ "
$p: \Leftrightarrow q$ is read " $p$ is defined by $q$ ", and implies $p \Leftrightarrow q$.
$x:=y$ is read " $x$ is defined by $y$, and implies $x=y$.
$\forall$ denotes "for all"
$\exists$ denotes "exists"

## 2 Sets and Functions

Definition 2.1 (Power Set). The power set of set $X$ is the set of all subsets of $X$ denoted

$$
\mathcal{P}(X):=\{A \mid A \subset X\}
$$

Definition 2.2 (Binary Relation). A binary relation $R$ between an element in set $X$ and an element in $Y$ is a subset of the Cartesian product $X \times Y$, that is $R \subset X \times Y$.

The statement $(x, y) \in R$ is read " $x$ is $R$-related to $y$ " and is denoted $x R y$. When $X=Y$, binary relation $R \subset X^{2}$ is said to be defined on set $X$.

Definition 2.3 (Function). A function $f: X \rightarrow Y$ is a binary relation $f \subset X \times Y$ that associates to each element $x \in X$ exactly one element $y \in Y$, that is:

- $\forall x \in X \exists y \in Y,(x, y) \in f$
- $\forall x \in X \forall y, y^{\prime} \in Y,\left[(x, y),\left(x, y^{\prime}\right) \in f \Rightarrow y=y^{\prime}\right]$
$(x, y) \in f$ is denoted $y=f(x)$.
Definition 2.4 (Image and Preimage (Inverse Image)). Let $f: X \rightarrow Y$ be a function.
Image $\forall A \subset X, f(A):=\{f(x) \mid x \in A\}$
Preimage $\forall B \subset Y, f^{-1}(B):=\{x \in X \mid f(x) \in B\}$


## 3 Vectors

Following notations are used for vectors and cartesian products. Particularly, vectors are denoted with normal fonts.

- $x=\left(x_{i}\right)_{i \in N}=\left(x_{1}, \ldots, x_{N}\right) \in X=\times_{i \in N} X_{i}$
- $x_{-i}:=\left(x_{j}\right)_{j \in N \backslash\{i\}}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) \in X_{-i}:=\times_{j \in N \backslash\{i\}} X_{j}$


## 4 Real Number and its Cartesian Products

Definition 4.1. Denote $\Re$ the set of real numbers and $\Re_{+}$the set of nonnegative real numbers.
Definition 4.2 (Maximization (Minimization)). Let $f: X \rightarrow \Re$ be a real-valued function and $A \subset X$. For minimization, replace max with min.

- $\arg \max _{x \in A} f(x):=\{x \in A \mid \forall y \in A, f(y) \leq f(x)\}$
- $\max _{x \in A} f(x):=\max f(A)$

Note that $\arg \max _{x \in A} f(x)$ need not be a singleton set, whereas $\max _{x \in A} f(x)$ is a single maximum element (if one exists) in $f(A)$.

Definition 4.3 (Product Order). For $x, y \in \Re^{N}$ :

- $x \geq y: \Leftrightarrow \forall i \in N, x_{i} \geq y_{i}$
- $x>y: \Leftrightarrow x \geq y \wedge x \neq y$
- $x \gg y: \Leftrightarrow \forall i \in N, x_{i}>y_{i}$

Definition 4.4 (Pareto efficiency (Pareto optimality)). $x \in S \subset \Re^{N}$ is
(weakly) Pareto efficient iff $\neg \exists y \in S, y \gg x$
strongly Pareto efficient iff $\neg \exists y \in S, y>x$

## 5 Probability

Definition 5.1. Denote $\Delta(X)$ a set of probability distributions over set $X$. If $X$ is finite, $\Delta(X)$ is called a simplex and fulfills

$$
\Delta(X)=\left\{\phi \in \Re^{X} \mid \sum_{x \in X} \phi(x)=1 \wedge(\forall x \in X, \phi(x) \geq 0)\right\}
$$

Definition 5.2 (Support). Support of a probability distribution $\phi \in \Delta(X)$ is

$$
\operatorname{supp} \phi=\{x \in X \mid \phi(x) \neq 0\}
$$

Definition 5.3 (Restriction). Probability $\phi \in \Delta(X)$ is restricted to $Y \subset X$ iff $\operatorname{supp} \phi \subset Y$.

