Basic Mathematics

Norimasa Kobayashi @ Tokyo Institute of Technology

1 Logic

 \wedge denotes "and"

 \lor denotes "or"

 \neg denotes "not"

 $p \Rightarrow q \,$ denotes "if p then q "

 $p \Leftarrow q \,$ denotes "if q then p "

 $p \Leftrightarrow q$ is defined by $(p \Rightarrow q) \land (q \Leftarrow p)$ and is read "p if and only if (iff) q"

 $p:\Leftrightarrow q$ is read "p is defined by q", and implies $p \Leftrightarrow q$.

x := y is read "x is defined by y, and implies x = y.

 \forall denotes "for all"

 \exists denotes "exists"

2 Sets and Functions

Definition 2.1 (Power Set). The power set of set X is the set of all subsets of X denoted

 $\mathcal{P}(X) := \{A | A \subset X\}$

Definition 2.2 (Binary Relation). A binary relation R between an element in set X and an element in Y is a subset of the Cartesian product $X \times Y$, that is $R \subset X \times Y$.

The statement $(x, y) \in R$ is read "x is R-related to y" and is denoted xRy.

When X = Y, binary relation $R \subset X^2$ is said to be defined on set X.

Definition 2.3 (Function). A function $f : X \to Y$ is a binary relation $f \subset X \times Y$ that associates to each element $x \in X$ exactly one element $y \in Y$, that is:

- $\forall x \in X \exists y \in Y, (x, y) \in f$
- $\forall x \in X \forall y, y' \in Y, [(x, y), (x, y') \in f \Rightarrow y = y']$

 $(x,y) \in f$ is denoted y = f(x).

Definition 2.4 (Image and Preimage (Inverse Image)). Let $f: X \to Y$ be a function.

Image $\forall A \subset X, f(A) := \{f(x) | x \in A\}$

Preimage $\forall B \subset Y, f^{-1}(B) := \{x \in X | f(x) \in B\}$

3 Vectors

Following notations are used for vectors and cartesian products. Particularly, vectors are denoted with normal fonts.

- $x = (x_i)_{i \in N} = (x_1, \dots, x_N) \in X = \times_{i \in N} X_i$
- $x_{-i} := (x_j)_{j \in N \setminus \{i\}} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \in X_{-i} := \times_{j \in N \setminus \{i\}} X_j$

4 Real Number and its Cartesian Products

Definition 4.1. Denote \Re the set of real numbers and \Re_+ the set of nonnegative real numbers.

Definition 4.2 (Maximization (Minimization)). Let $f : X \to \Re$ be a real-valued function and $A \subset X$. For minimization, replace max with min.

- $\arg \max_{x \in A} f(x) := \{x \in A \mid \forall y \in A, f(y) \le f(x)\}$
- $\max_{x \in A} f(x) := \max f(A)$

Note that $\arg \max_{x \in A} f(x)$ need not be a singleton set, whereas $\max_{x \in A} f(x)$ is a single maximum element (if one exists) in f(A).

Definition 4.3 (Product Order). For $x, y \in \Re^N$:

- $x \ge y : \Leftrightarrow \forall i \in N, x_i \ge y_i$
- $x > y : \Leftrightarrow x \ge y \land x \ne y$
- $x \gg y :\Leftrightarrow \forall i \in N, x_i > y_i$

Definition 4.4 (Pareto efficiency (Pareto optimality)). $x \in S \subset \Re^N$ is

(weakly) Pareto efficient iff $\neg \exists y \in S, y \gg x$

strongly Pareto efficient iff $\neg \exists y \in S, y > x$

5 Probability

Definition 5.1. Denote $\Delta(X)$ a set of probability distributions over set X. If X is finite, $\Delta(X)$ is called a simplex and fulfills

$$\Delta(X) = \{ \phi \in \Re^X | \sum_{x \in X} \phi(x) = 1 \land (\forall x \in X, \phi(x) \ge 0) \}$$

Definition 5.2 (Support). Support of a probability distribution $\phi \in \Delta(X)$ is

$$\operatorname{supp} \phi = \{x \in X | \phi(x) \neq 0\}$$

Definition 5.3 (Restriction). Probability $\phi \in \Delta(X)$ is restricted to $Y \subset X$ iff supp $\phi \subset Y$.