Chapter 7 Transportation, Assignment, and Transshipment Problems

7.1 Formulating Transportation Problems

Plant/City	1	2	3	4	Supply
1	\$8	\$6	\$10	\$9	35
2	\$9	\$12	\$13	\$7	50
3	\$14	\$9	\$16	\$5	40
Demand	45	20	30	30	

LP formulation

 X_{ij} : number of kwh produced at plant i and sent to city j

min z =
$$8x_{11} + 6x_{12} + 10x_{13} + 9x_{14} + 9x_{21} + 12x_{22} + 13x_{23} + 7x_{24}$$

 $+14x_{31} + 9x_{32} + 16x_{33} + 5x_{34}$
s.t. $x_{11} + x_{12} + x_{13} + x_{14} \le 35$ $x_{11} + x_{21} + x_{31} \ge 45$ $x_{ij} \ge 0$
 $x_{21} + x_{22} + x_{23} + x_{24} \le 50$ $x_{12} + x_{22} + x_{32} \ge 20$ $(i = 1, 2, 3; j = 1, 2, 3, 4)$
 $x_{31} + x_{32} + x_{33} + x_{34} \le 40$ $x_{13} + x_{23} + x_{33} \ge 30$
 $x_{14} + x_{24} + x_{34} \ge 30$

General Description

$$\min \sum_{i=1}^{i=m} \sum_{j=1}^{j=n} c_{ij} x_{ij} \qquad c_{ij}$$
 variable cost

s.t.
$$\sum_{j=1}^{j=n} x_{ij} \le S_i \quad \forall_i$$

$$\underbrace{i=m}$$

Balanced transportation problem

$$\sum_{i=1}^{i=m} s_i = \sum_{j=1}^{j=n} d_j$$

s.t.

$$\sum_{j=1}^{j=n} x_{ij} = s_i \quad \sum_{i=1}^{i=m} x_{ij} = d_j$$

Balancing if total supply exceeds total demand

Create *dummy demand point*

Assigned a cost of zero

Indicate unused supply capacity

Balancing if total supply is less than total demand

No feasible solution

dummy supply point as unmet demand

Distribution System: Logistics

Product 1

Plant 2 p1, p2 [60,000], same production costs

Warehouse 2 w1, w2, same handling costs

Market area 3 c1[50,000], c2[100,000], c3[50,000]

Transport cost based on distance

	p 1	p2	c1	c2	c3
w1	0	4	3	4	5
w2	5	2	2	1	2

Heuristic Solution(近似的解法)

Find a distribution strategy

- specifies the flow from the plants through the warehouses to the markets
- satisfies market demand
- plant p2 capacity constraint
- minimizes total distribution cost
- * Assumption: facility location is not an issue.

Heuristic 1 Closer warehouse for customer (not considering plant)

Heuristic 2 Closer warehouse for customer (considering plant)

p2 - w2 - c1 [4] p2 - w2 - c2 p2 - w2 - c3

 $Total\ cost = 920,000$?

Optimized Solutions

Formulation

Objective Function

Min.
$$TC = 0 \cdot x(p1, w1) + 5 \cdot x(p1, w2) + 4 \cdot x(p2, w1) + 2 \cdot x(p2, w2) + 3 \cdot x(w1, c1) + 4 \cdot x(w1, c2) + 5 \cdot x(w1, c3) + 2 \cdot x(w2, c1) + 1 \cdot x(w2, c2) + 2 \cdot x(w2, c3)$$

$$x(\cdot, \cdot) \text{ flows}$$

Constraints

Plant Capacity
$$x(p2, w1) + x(p2, w2) \le 60,000$$

Flow Equality
$$x(p1, w1) + x(p2, w1) = x(w1, c1) + x(w1, c2) + x(w1, c3)$$

 $x(p1, w2) + x(p2, w2) = x(w2, c1) + x(w2, c2) + x(w2, c3)$

Satisfied Demand
$$x(w1,c1) + x(w2,c1) = 50,000$$

 $x(w1,c2) + x(w2,c2) = 100,000$
 $x(w1,c3) + x(w2,c3) = 50,000$

Optimized Cost

$$= \underline{740,000}$$

	p1	p2	c1	c2	c3
w1	140	0	50	40	50
<u>w2</u>	0	60	0	60	0

7.2 Finding Basic Feasible Solutions (基底許容解)

Transportation Tableau

Northwest corner method

Not utilize shipping costs

Minimum cost method Find a bfs with a lower total cost

2		2		3		5	6	5
		2	8	1		3	5	2
		3		8		4	6	15
•	12	2	+	_	_	4	6	

4	5	2		3	5	6	+
	2	2	8	1	3	5	+
		3		8	4	6	15
'	5		+	_	 4	6	

Vogel's method

Use penalty

1 6 7 8 10 1 15 80 78 15 63 15 5 5 ↑ 9 73 70 ← Penalty

		6	5	7		8	4	5	2
	1	5		80		78	1	5	63
•	15	5	_	H	4	5			
	9			_	7	0			

3 6 5 7 5 8 0 -15 80 78 15 -15 + + 9 - -

4	0	6	5	7	5	8	+	_
		15		80		78	15	-
	1	5	_	H	_	H		

5 0 6 5 7 5 8 10 15 15 80 78 15 15 5 5

Penalty: difference between the two smallest costs (in the row, column)

Loop

- 1. Any two consecutive cells lie in either the same row and same column
- 2. No three consecutive cells lie in the same row or column
- 3. The last cell in the sequence has a row or column in common with the first cell in the sequence

In a balanced transportation problem with m supply points and n demand points, the cells corresponding to a set of m + n - 1 variables contain no loop if and only if the m + n - 1 variables yield a basic solution

7.3 Transportation Simplex Method

How to pivot

Step 1 Determine the variables that should enter the basis.

Step 2 Find the loop involving the entering variable and some of the basic variables.

Step 3 Counting only cells in the loop. Label *even cells* and *odd cells*.

Step 4 Find the odd cell whose variable assume the smallest value. To perform the pivot, decrease the value of each odd cell and increase the value of each even cell.

$$0 1 2 3 4 5$$

$$(1,4)-(3,4)-(3,3)-(2,3)-(2,1)-(1,1)$$

				_
35			*	35
10	20	20		50
		10	30	40
45	20	30	30	_

35-20			0+20	35
10+20	20	20-20		50
		10+20	30-20	40
45	20	30	30	1

How to determine whether a bfs is optimal How to determine which nonbasic variable should enter the basis

- 1. First supply constraint dropped ($u_1 = 0$)
- 2. $-u_i$: shadow price of the i th supply constraint $-v_j$: shadow price of the j th demand constraint
- 3. $c_{ij} u_i v_j \ge 0$ or $u_i + v_j c_{ij} \le 0$ for all nonbasic variables Then current bfs is optimal
- 4. Otherwise nonbasic variables with most positive value of $u_i + v_i c_{ii}$ should enter the basis

								•
35	8		6		10		9	35
10	9	20	12	20	13		7	50
	14		9	10	16	30	5	40
45 20 30 30								
$u_i + v_j - c_{ij} = 0$								
for all BV								

$$u_{1} = 0$$

$$u_{1} + v_{1} = 8$$

$$u_{2} + v_{1} = 9$$

$$u_{2} + v_{2} = 12$$

$$u_{2} + v_{3} = 13$$

$$u_{3} + v_{4} = 5$$

$$-c_{12} = u_{1} + v_{2} - c_{12}$$

$$= 0 + 11 - 6 = 5$$

$$-c_{13} = 2, c_{14} = -8$$

$$-c_{24} = -5, c_{31} = -2$$

$$-c_{32} \neq 6$$

How to determine whether a bfs is optimal

7.5 Assignment Problems

Machine/Job	1	2	3	4
1	14	5	8	7
2	2	12	6	5
3	7	8	3	9
4	2	4	6	10

 $x_{ii} = 1$: if machine i is assigned to meet the demand of job j

 $x_{ij} = 0$: if machine *i* is not assigned to meet the demand of job *j*

min z =
$$14x_{11} + 5x_{12} + 8x_{13} + 7x_{14} + 2x_{21} + 12x_{22} + 6x_{23} + 5x_{24}$$

+ $7x_{31} + 8x_{32} + 3x_{33} + 9x_{34} + 2x_{41} + 4x_{42} + 6x_{43} + 10x_{44}$

s.t.
$$x_{11} + x_{12} + x_{13} + x_{14} = 1$$
 Machine constraints
$$x_{11} + x_{21} + x_{31} + x_{41} = 1$$
 Job

.. constraints

$$x_{ij} = 0$$
 or $x_{ij} = 1$

Assignment Problem

All supplies and demands = 1