3.1 What is a Linear Programming Problem?

Ex.1 Manufacture of toys

	Prices	Worth	Costs	Finishing	Carpentry
Wooden soldiers	\$ 27	\$10	\$14	2 hours	1 hour
Wooden trains	\$ 21	\$9	\$ 10	1 hour	1 hour

Conditions: no more than 100 hours of finishing hours weekly no more than 80 hours of carpentry hours weekly at most 40 demand of soldiers weekly unlimited demand of trains **Find to maximize weekly profit**

Solution

Decision Variables

*x*₁: number of soldiers produced each week

*x*₂: number of trains produced each week

Objective Function

Fixed costs do not depend on the value x1 and x2

Weekly revenues = $27 x_1 + 21 x_2$

Weekly raw material costs = $10 x_1 + 9 x_2$

Weekly variable costs = $14 x_1 + 10 x_2$

Weekly profit = $(27-10-14) x_1 + (21-9-10) x_2 = 3 x_1 + 2 x_2$

Max $z = 3 x_1 + 2 x_2$

Objective function coefficient

Constraints

Total finishing hrs. per week = $2 x_1 + 1 x_2$ $2 x_1 + x_2 \le 100$ Total carpentry hrs. per week = $1 x_1 + 1 x_2$ $x_1 + x_2 \le 80$ At most 40 demand of soldiers per week $x_1 \le 40$ Technological coefficient, Right-hand side (rhs)

Sign Restriction

Assume nonnegative values for decision variable

Optimization model

Max $z = 3 x_1 + 2 x_2$ Subject to (s.t.) $2 x_1 + x_2 \le 100$ $x_1 \ge 0$ $x_1 + x_2 \le 80$ $x_2 \ge 0$ $x_1 \le 40$

Assumption and Definition

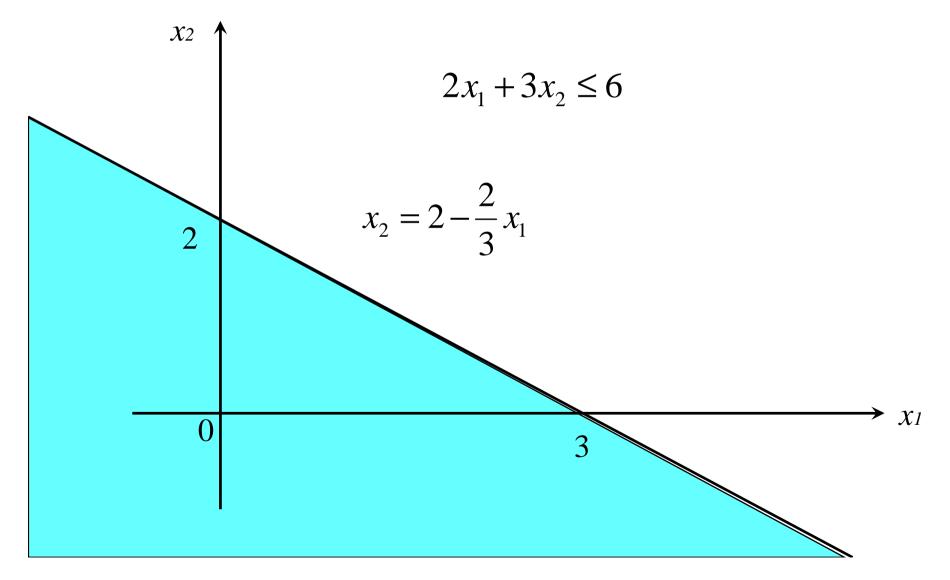
- 1. Proportionality assumption of Linear Programming
- 2. Additivity assumption of Linear Programming
- 3. Divisibility assumption

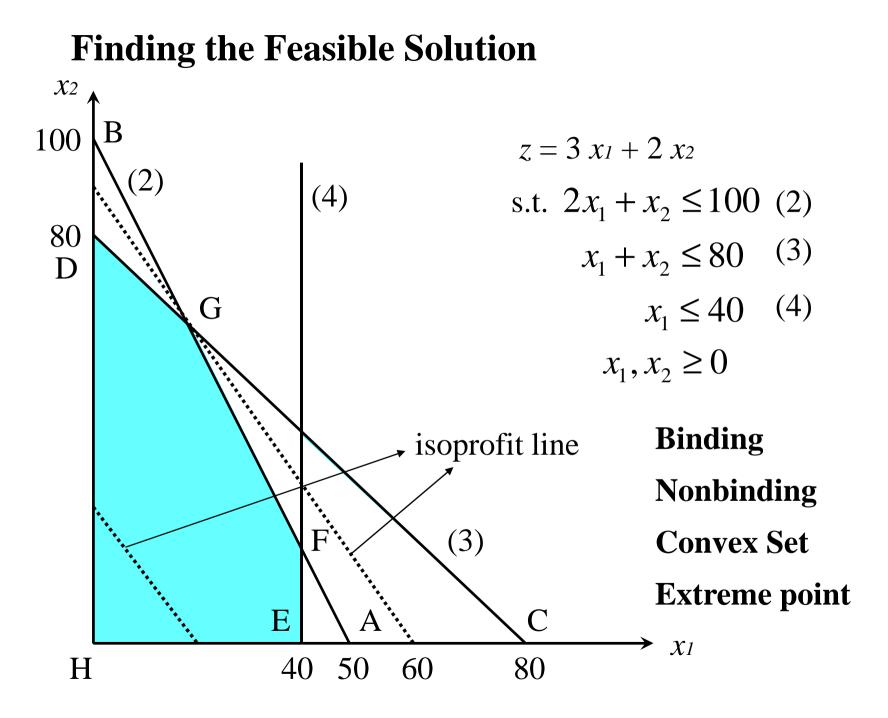
--- Integer programming problem

- 4. Certainty assumption
- 5. Feasible region
- 6. Optimal solution

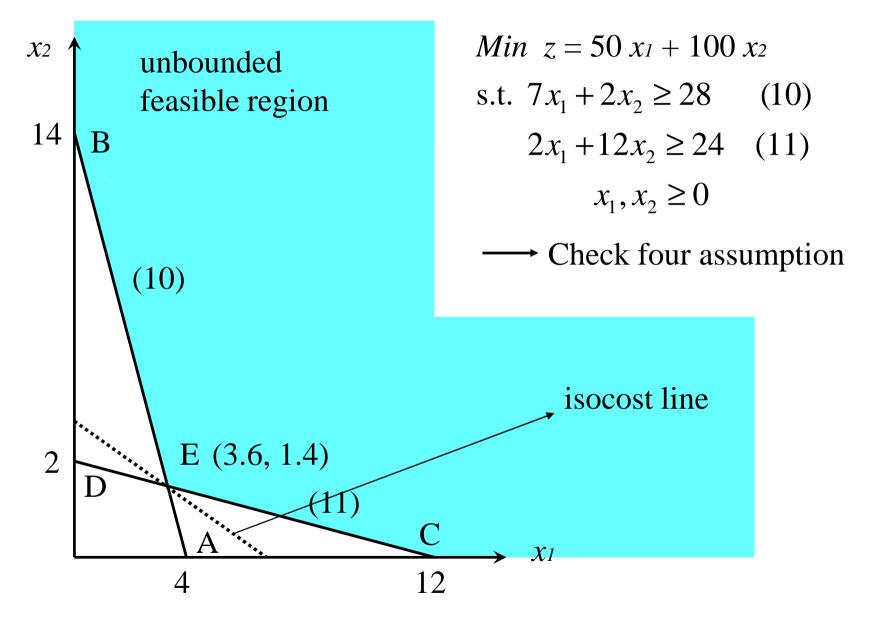
3.2 The Graphical Solution of Two-Variable

LP with only two variables can be solved graphically.





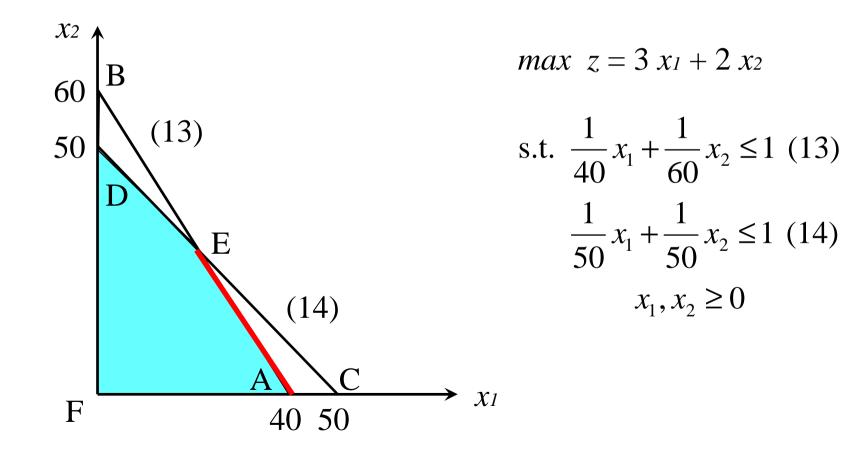
Graphical Solution of Minimization Problems



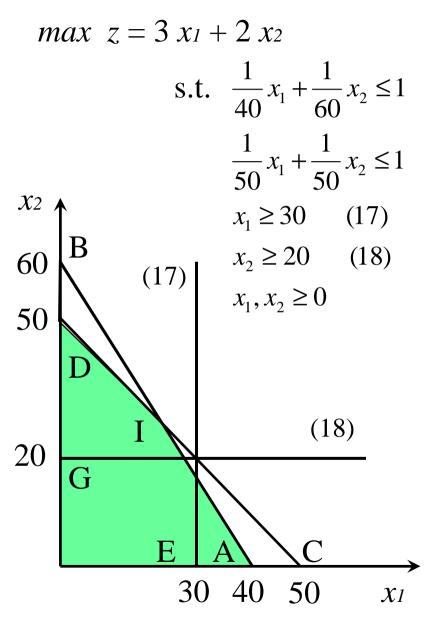
3.3 Special Cases

Some types of LPs do not have unique optimal solution

An infinite number of optimal solutions - Alternative or multiple optimal solutions



Infeasible



Unbounded

max $z = 2 x_1 - x_2$ s.t. $x_1 - x_2 \le 1$ (19) $2x_1 + x_2 \ge 6$ (20) $x_1, x_2 \ge 0$ X_2 D 6 B (20)(19) E C F 3 χ_l

3.4 Diet Problem

Satisfy daily nutritional requirement at minimum cots min $z = 50x_1 + 20x_2 + 30x_3 + 80x_4$ s.t. $400x_1 + 200x_2 + 150x_3 + 500x_4 \ge 500$ Daily calorie intake at least 500 $3x_1 + 2x_2 \ge 6$ Daily chocolate intake at least 6 $2x_1 + 2x_2 + 4x_3 + 4x_4 \ge 10$ Daily sugar intake at least 10 $2x_1 + 4x_2 + x_3 + 5x_4 \ge 8$ Daily fat intake at least 8 $x_1, x_2, x_3, x_4 \ge 0$

Optimal Solution

$$x_1, x_4 = 0, \ x_2 = 3, x_3 = 1$$
$$z = 50x_1 + 20x_2 + 30x_3 + 80x_4 = 90$$

3.5 Work-Scheduling Problem

Post office to minimize the number of full-time employees

Incorrect solution

min	$z = x_1 + .$	$x_2 + \dots + x_6 + x_7$
<i>xi</i> : n	umber of e	employees working
on da	ay i	Day 1: Monday, Day 2: Tuesday,
s.t.	$x_1 \ge 17$	
	$x_2 \ge 13$	
	$x_3 \ge 15$	
	$x_4 \ge 19$	
	$x_5 \ge 14$	
	$x_6 \ge 16$	
	$x_7 \ge 11$	
	x_1, x_2, x_3	$, x_4, x_5, x_6, x_7 \ge 0$

Correct solution

 $\begin{array}{ll} \min \ z = x_1 + x_2 + \dots + x_6 + x_7 \\ x_i: \ \text{number of employees beginning to} \\ \text{work on day } i & \text{Day 1: Monday,} \\ & \text{Day 2: Tuesday,} \dots \end{array}$

S.t.
$$x_{1} + x_{4} + x_{5} + x_{6} + x_{7} \ge 17$$
$$x_{1} + x_{2} + x_{5} + x_{6} + x_{7} \ge 13$$
$$x_{1} + x_{2} + x_{3} + x_{6} + x_{7} \ge 15$$
$$x_{1} + x_{2} + x_{3} + x_{4} + x_{7} \ge 19$$
$$x_{1} + x_{2} + x_{3} + x_{4} + x_{5} \ge 14$$
$$x_{2} + x_{3} + x_{4} + x_{5} + x_{6} \ge 16$$
$$x_{3} + x_{4} + x_{5} + x_{6} + x_{7} \ge 11$$
$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \ge 0$$

3.6 Capital Budgeting Problem

Determine what fraction of each investment to purchase

 $\max \ z = 13x_1 + 16x_2 + 16x_3 + 14x_4 + 39x_5$

To maximize the NPV earned from investment *xi*: fraction of investment *i* purchased

s.t. $11x_1 + 53x_2 + 5x_3 + 5x_4 + 29x_5 \le 40$ Cash flow in time 0 $3x_1 + 6x_2 + 5x_3 + x_4 + 34x_5 \le 20$ Cash flow in time 1 $x_1, x_2, x_3, x_4, x_5 \le 1$ Fraction condition $x_1, x_2, x_3, x_4, x_5 \ge 0$

*Net Present Value (NPV) r: annual interest rate \$1 now = $(1+r)^k k$ years from now

1 dollar k years from now is equivalent to receiving $(1+r)^{-k}$ now