ディジタル信号処理

（X）
学術国際情報センター山口雅浩

高速フーリエ変換（FFT）

－N 点DFTの計算
$X(k)=\boldsymbol{D F T}\{x(n)\}=\sum_{n=0}^{N-1} x(n) \cdot W_{N}^{n k}$

- N^{2} 回の複素乗算
- $N(N-1)$ 回の複素加算
- 高速フーリエ変換（Fast Fourier Transform：FFT） －DFTの性質を利用して乗算回数を削減
－Cooley and Tukey のアルゴリズム
－$N=2^{p}$ のときが多く用いられる
\rightarrow 乗算回数は $(N / 2)\left(\log _{2} N-1\right)$

$$
X(k)=\boldsymbol{D F T}\{x(n)\}=\sum_{n=0}^{N-1} x(n) \cdot W_{N}^{n k}
$$

$$
n \text { を偶数と奇数に分ける }
$$

$$
l=0,1, \ldots N / 2-1 \text { を用いて }
$$

$$
X(k)=\sum_{l=0}^{N / 2-1} x(2 l) \cdot W_{N}^{2 l k}+\sum_{l=0}^{N / 2-1} x(2 l+1) \cdot W_{N}^{(2 l+1) k}
$$

$$
W_{N}^{2 l k}=e^{-j \frac{2 \pi}{N}(2 l k)}=e^{-j \frac{2 \pi}{N / 2} l k}=W_{N / 2}^{l k} \quad \text { と変形できるので, }
$$

$$
\begin{gathered}
X(k)=\frac{\sum_{l=0}^{N / 2-1} x(2 l) \cdot W_{N / 2}^{l k}}{G(k)}+W_{N}^{k} \sum_{l=0}^{N / 2-1} x(2 l+1) \cdot W_{N / 2}^{l k} \\
H(k)
\end{gathered}
$$

（ $N / 2$ ）点DFTの式と同じだが，$k=0,1, \ldots N-1$
$G(k)=\sum_{l=0}^{N / 2-1} x(2 l) \cdot W_{N / 2}^{l k}$
$H(k)=\sum_{l=0}^{N / 2-1} x(2 l+1) \cdot W_{N / 2}^{l k}$
を $k=0,1, \ldots N-1$ について計算する必要がある

しかし，$N / 2 \leq k \leq N-1$ では，$k^{\prime}=k-N / 2$ として
$W_{N / 2}^{l k}=W_{N / 2}^{l\left(k^{\prime}+N / 2\right)}=W_{N / 2}^{l k^{\prime}+(N / 2) l}=W_{N / 2}^{l k^{\prime}}$
が成り立つことから，$k=N / 2, N / 2+1, \ldots N-1$ に対しては
$G(k)=G(k-N / 2)$
$H(k)=H(k-N / 2)$
であり，$G(k), H(k)$ の計算は，$k=0,1, \ldots N / 2-1$ だけ行えばよい

さらに，同様に，$N / 2 \leq k \leq N-1$ では $k^{\prime}=k-N / 2$ として

$$
W_{N}^{k}=W_{N}^{k^{\prime}+N / 2}=W_{N}^{k^{\prime}} W_{N}^{N / 2}=W_{N}^{k^{\prime}} \cdot e^{-j \frac{2 \pi}{N} \cdot \frac{N}{2}}=W_{N}^{k^{\prime}} \cdot e^{-j \pi}=-W_{N}^{k^{\prime}}
$$

であることから，W_{N}^{k} の計算も $k=0,1, \ldots N / 2-1$ まででよく，
以下のようにして計算できる

$$
\begin{aligned}
& k=0,1, \ldots N / 2-1 \\
& \quad X(k)=G(k)+W_{N}^{k} H(k) \\
& k=N / 2, N / 2+1, \ldots N-1 \\
& \left(k^{\prime}=0,1, \ldots N / 2-1\right) \\
& \quad \\
& \quad X(k)=G\left(k^{\prime}\right)-W_{N}^{k^{\prime}} H\left(k^{\prime}\right)
\end{aligned}
$$

シグナルフローグラフ

$x(0)$
$x(4)$
$x(2)$

\rightarrow バタフライ演算

計算量について（乗算回数）

2点DFTの計算 $\quad x(l)+x\left(l+\frac{N}{2}\right)$
．．．乗算回数はO

$$
x(l)-x\left(l+\frac{N}{2}\right)
$$

各ステップにおいて
$W_{N}^{0} \ldots W_{N}^{N / 2}$
の複素乗算 $\rightarrow(N / 2)$
（ただしN＝2のときは不要）
$\log _{2} N$ ステップ $\quad \square \quad \frac{N}{2}\left(\log _{2} N-1\right)$ or $O\left\{N \log _{2} N\right\}$

留意点

－FFT，DFTのプログラムでは，あらかじめ \cos , \sin は計算して テーブルとして持っておく
（ \cos , \sin の計算には時間が掛かるため）
－IFFTは

$$
\mathrm{X}(\mathrm{k}) \rightarrow \mathrm{FFT} \rightarrow \begin{array}{|l|}
\hline \text { 順番を反転 } \rightarrow 1 / \mathrm{N} . \\
\hline
\end{array}
$$

により計算できる。

－実数であることがわかっている信号のFFTでは，$X(0) \ldots X(N / 2)$ まで計算し，$X(N / 2+1) . . . X(N-1)$ を $X(N-k+1)$ の複素共役として求めてもよい。 ※ただしー般に $X(k)$ は複素数なのでIFFTには使えない
－FFTのプログラムは書籍•webなどから比較的容易に入手可能。 （FFTは信号処理以外でも幅広く用いられている）

さらに深く習いたい人は

－ここで紹介したFFTアルゴリズムは「時間間引き形」と呼ばれるもの。他に「周波数間引き形」のアルゴリズムもある。
ref．「デイジタル信号処理の基礎」，辻井重男監修，電子情報通信学会編など

- Dが 2 でばは無い場合のアルゴリズムもある。
- 時間信号の周波数解析を行う場合，DFTは有限長の時間信号を周期関数とし て扱っていることに留意する必要がある。端部の影響を避けるために，「窓関数」がよく用いられる。有名なものにハミング窓，ハニング窓などがある。
－画像などの 2 次元信号に合わせたFFTもある。計算時間がそれほど問題にな らない場合には，1次元FFTを各行に適用し，その結果の各列に対して再度1次元FFTを適用することで2次元信号のDFTを行うことができる。
－DFTは離散系列に対する直交変換の一種である。DFT以外の直交変換も多数ある。離散コサイン変換（DCT）はJPEGなどの画像圧縮に用いられる。他に， アダマール変換，ハール変換，KL変換などがある。

