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Chapter 5 Dislocation Multiplication and Cutting 
 
5.1 Curved dislocations 
 under applied shear stress τ 
 ・force acting on a curved (radius r) dislocation segment of 
  length Δs : τ bΔs 
 ・force due to the dislocation line tension : 2TLsin θ 
 ・ Δs = 2rθ 

  !"b#s = 2"br$ = 2TL sin$ % 2TL$  

 From (2.8) 
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5.2 Dislocation multiplication 

  in well annealed metal: 
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  in heavily deformed metal: 
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 Dislocation multiplication occurs during  
 plastic deformation. 
 
 From (5.1) :  smaller r  → larger τ 
 
 
 
 
 Which bow out stage in Fig. 5.3 needs the largest applied stress? 
 
 
 
 
 
 
 
 
 
 
 Stage 3 : semi-circular dislocation shape 

  ! =
µb

d
 (5.2) 

Fig. 5.1  Force balance on 
  a curved dislocation 
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Fig. 5.2  Dislocation bow out between 
  the two nodes A and B. 
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Fig. 5.3  Sequence of dislocation bow out showing the critical stage 3. 
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5.3 Mutual cutting of dislocations (formation of kinks and jogs) 
 The case for a screw dislocation A cutting an  
 edge dislocation I and a screw dislocation II 
 
 
 After cutting, a kink and a jog are formed. 
 
 
 The jog is difficult to move. 
 
 
 One origin of work hardening. 
 
 
--------------------------------------------------------------- 
Problem 5.1 
(a) In Fig. 5.5, show that the formed jog on dislocation B cannot move with B. 
(b) After further motion of B (under the condition of the above (a)), show that an edge 
dislocation dipole is produced. 
(c) Draw a similar picture to Fig. 5.5 for the case that A is an edge dislocation.  Explain that 
a kink and a jog formed on B are easily movable.  
--------------------------------------------------------------- 
 

(a) (b) 

Fig. 5.4  Frank-Read dislocation multiplication mechanisms 
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Fig. 5.5  Formation of a kink and a jog by motion of 
  dislocation A cutting through dislocations I and II. 
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Chapter 6 Stress-strain Curves 
 
6.1 Theoretical strength of a perfect crystal 
Suppose a unit slip b occurs in a perfect crystal under shear stress τ 
 
 
 
 
 
 
 
 
 
 
 
stress necessary to move atoms on B plane as much as b 
  ! = !m sin(2"x / b)  
for small x 
  ! " 2#!mx / b  (6.1) 
from Hooke’s law 
  ! = µ(x / a)  (6.2) 
Equating (6.1) and (6.2),  
 
  !m = µb / (2"a) # µ / (2")     (theoretical strength) (6.3) 
 
 The theoretical strength is much larger than CRSS of single crystals. 
 
 
6.2 Terminologies for the stress-strain curves 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.1  Plastic deformation of a perfect crystal 
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Fig. 6.2  Schematic tensile stress-strain curve of a ductile material. 
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6.3 Plastic deformation of single crystals 
 
 
 
 
 
 
 
 
 
 
 
 
 
Stage I (easy glide stage) : single slip by the primary slip system 
Stage II (linear work-hardening stage) : multiple slip and dislocation-dislocation interaction 
Stage III (parabolic hardening) : dynamic recovery by cross slip 
 
 
 
 
 
 
 
 
6.4 Plastic deformation of polycrystals 
6.4.1 Taylor factor 
 

 M ! " y / # c    (6.4) 

     ! y : yield stress, " c :CRSS of a single crystal,    M : Taylor factor  

 
6.4.2 Hall-Petch relationship 
As the grain size becomes smaller, strength 
becomes higher. 

 ! y = ! 0 + ky d
"1/2          (6.5) 

 

! y : yield stress

! 0 : a constant

ky :Hall-Petch coefficient

d : grain size

 

 

Fig. 6.3  Yielding of single crystals        Fig. 6.4  Typical stress-strain curve of a single crystal 
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Fig. 6.5  Recovery by dislocation pair annihilation.  (a) cross slip, (b) climb.         

(a)                                       (b) 

Fig. 6.6  Parallel dislocations piled up on the same  
  slip plane.  Stress concentration occurs at x = 0. 
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(1) When n dislocations pile up under shear stress τ, the first dislocation at x = 0 feels a 
 concentrated stress of nτ. 
(2) Yielding is considered to occur when the concentrated stress nτ reaches a certain critical 
value τcrit.  That is, n = ! crit / ! . 
(3) Pile-up distance l and stress τ are related as l ! n / " . 
(4) From (2) and (3), we have l !1 / " 2  or ! " l

#1/2 . 
(5) If l ! d , then we have the second term of (6.5). 
 
6.4.3 von-Mises criterion 
     plastic deformation → occurs by shear → constant volume (!ii " !11 + !22 + !33 = 0 ) 
 
 To change the shape of a polycrystal arbitrarily, at least five (5) independent  
 slip systems must exist. 
 
For crystals such as hcp, if the number of independent slip systems is less than five, extensive 
palstic deformation is not possible. → brittle fracture 
 
 
 


