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Chapter 4 Dislocations in Crystals 
 

4.1 Perfect dislocations 
 ・E0 = ! µb2  (2.7)  → b : as small as possible 
 ・No change in crystal structure before and after the motion of dislocations 
   → b : lattice translation vector 
 

b : primitive translation vector 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Partial dislocations and stacking faults 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) fcc            (b) bcc              (c) hcp 

Fig. 4.1  Burgers vectors of perfect dislocations 
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Fig. 4.2  Rigid sphere model of fcc and stacking of the (111) planes. 
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Fig. 4.3  (a) perfect dislocation (b1) on fcc (111) and two Schockley partials (b2, 
 b3), (b) extended dislocation made of two Schockley partials and a stacking fault. 
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 b1 : translation vector (perfect dislocation) 
 b2, b3 : non-translation vector (partial dislocation)  → Schockley partials 
 
 Burgers vector conservation law: b1 = b2 + b3  

               
a

2
[101]!

a

6
[112] +

a

6
[211]  (4.1) 

                       b1  =   b2  +  b3 
 

A pair of partial dislocations  +  stacking fault  =  extended dislocations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
--------------------------------------------------------------- 
Problem 4.1 
(a) What kind of stacking is realized when one of the Schockley partials, say, b2 = a[112] / 6 , 
run on every parallel (111) fcc plane? 
(b) The same question as above but on every other parallel (111) fcc plane? 
--------------------------------------------------------------- 
 
 
 

extended 
dislocation 

Fig. 4.4  Motion of an extended dislocation 
 and creation of stacking fault. 
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Table 4.1 

Stacking fault energy  (mJ/m2) 

   Cu      Al      Fe 

   40         200     1000 
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(a) acute triangle        (b) right triangle      (c) obtuse triangle 

Fig. 4.5  If b1 dissociates into b2 and b3, only the case (c) is possible. 
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4.3 Twinning (Formation of twinned structure) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.4 Cross slip and climb motion 
(a) screw dislocation : b // t 
 b and t do not determine a unique slip plane. 
 
For cross slip to occur 
 An extended dislocation must constrict. 
 
 
 
 Cross slip is more difficult in metals with  
 smaller stacking fault energy. 
 
 
(b) edge dislocation: b ⊥ t 
 b and t determine a unique slip plane. 
 
 Changing slip planes is possible only 
 when atoms either come from or go to 
 somewhere else. 
 
 
 Non-conservative motion of dislocations 
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Fig. 4.6  Formation of three-layered twinned crystal by the motion of b2 Schockley partials 
  on every parallel (111) plane of fcc. 
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Fig. 4.7  Cross slip of a screw dislocation. 
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Fig. 4.8  Climb motion of an edge dislocation. 


