Chapter 4 Dislocations in Crystals

4.1 Perfect dislocations

- $E_0 = \alpha \mu b^2$ (2.7) \rightarrow |**b**|: as small as possible
- No change in crystal structure before and after the motion of dislocations
 - \rightarrow **b** : lattice translation vector

b : primitive translation vector $\mathbf{b} = \frac{a}{2} < 110 > \mathbf{b} = \frac{a}{2} < 110 > \mathbf{b} = \frac{a}{2} < 110 > \mathbf{b} = \frac{a}{3} < 11\overline{2}0 > \mathbf{c}$ (a) fcc
(b) bcc
(c) hcp

Fig. 4.1 Burgers vectors of perfect dislocations

4.2 Partial dislocations and stacking faults

Fig. 4.2 Rigid sphere model of fcc and stacking of the (111) planes.

Fig. 4.3 (a) perfect dislocation (\mathbf{b}_1) on fcc (111) and two Schockley partials $(\mathbf{b}_2, \mathbf{b}_3)$, (b) extended dislocation made of two Schockley partials and a stacking fault.

 \mathbf{b}_1 : translation vector (perfect dislocation) \mathbf{b}_2 , \mathbf{b}_3 : non-translation vector (partial dislocation) \rightarrow Schockley partials

Burgers vector conservation law: $\mathbf{b}_1 = \mathbf{b}_2 + \mathbf{b}_3$

$$\frac{a}{2}[\overline{1}01] \rightarrow \frac{a}{6}[\overline{1}\overline{1}2] + \frac{a}{6}[\overline{2}11]$$

$$\mathbf{b}_1 = \mathbf{b}_2 + \mathbf{b}_3$$
(4.1)

A pair of partial dislocations + stacking fault = extended dislocations

Fig. 4.4 Motion of an extended dislocation and creation of stacking fault.

Fig. 4.5 If \mathbf{b}_1 dissociates into \mathbf{b}_2 and \mathbf{b}_3 , only the case (c) is possible.

Problem 4.1

(a) What kind of stacking is realized when one of the Schockley partials, say, $\mathbf{b}_2 = a[\overline{1}\overline{1}2]/6$, run on every parallel (111) fcc plane?

(b) The same question as above but on every other parallel (111) fcc plane?

4.3 Twinning (Formation of twinned structure)

Fig. 4.6 Formation of three-layered twinned crystal by the motion of b_2 Schockley partials on every parallel (111) plane of fcc.

4.4 Cross slip and climb motion

(a) screw dislocation : **b** // **t**

b and **t** do not determine a unique slip plane.

For cross slip to occur

An extended dislocation must constrict.

 \int

Cross slip is more difficult in metals with smaller stacking fault energy.

(b) edge dislocation: $\mathbf{b} \perp \mathbf{t}$

b and **t** determine a unique slip plane.

Changing slip planes is possible only when atoms either come from or go to somewhere else.

Non-conservative motion of dislocations

Fig. 4.7 Cross slip of a screw dislocation.

