Chapter 3 Force Acting on a Dislocation

3.1 Peach-Koehler equation

$\left\{\begin{array}{l}\tau: \text { applied shear stress } \\ l: \text { the length of the dislocation } \\ x: \text { distance that the dislocation moved } \\ b: \text { magnitude of the Burgers vector } \mathbf{b}\end{array}\right.$
the work done W by the applied stress

$$
W=(\text { force }) \times(\text { distance })=(\tau l x) \times b
$$

Fig. 2.2

Rearranging variables, we have

$$
\begin{equation*}
W=(\tau b l) \times x=(\text { force } \tau b l) \times(\text { distance } x) \tag{3.1}
\end{equation*}
$$

$$
\text { Force acting on a unit length of a dislocation }=\tau b
$$

More strictly,

$$
\left\{\begin{array}{l}
\sigma_{i j}: \text { applied shear stress } \\
\mathbf{t}: \text { dislocation line (unit) vector } \\
\mathbf{f}: \text { force acting on a unit length of a dislocation } \\
A_{j} \equiv \sum_{i=1}^{3} \sigma_{i j} b_{i}: \text { a vector }
\end{array}\right.
$$

$$
\begin{equation*}
\mathbf{f = \mathbf { A } \times \mathbf { t } \quad \text { (Peach-Koehler equation) }} \tag{3.2}
\end{equation*}
$$

The force is always acting perpendicularly to the dislocation.

$$
\left\{\begin{array} { l }
{ A _ { 1 } \equiv \sigma _ { 1 1 } b _ { 1 } + \sigma _ { 2 1 } b _ { 2 } + \sigma _ { 3 1 } b _ { 3 } } \tag{3.3}\\
{ A _ { 2 } \equiv \sigma _ { 1 2 } b _ { 1 } + \sigma _ { 2 2 } b _ { 2 } + \sigma _ { 3 2 } b _ { 3 } } \\
{ A _ { 3 } \equiv \sigma _ { 1 3 } b _ { 1 } + \sigma _ { 2 3 } b _ { 2 } + \sigma _ { 3 3 } b _ { 3 } }
\end{array} \quad \left\{\begin{array}{l}
f_{1}=A_{2} t_{3}-A_{3} t_{2} \\
f_{2}=A_{3} t_{1}-A_{1} t_{3} \\
f_{3}=A_{1} t_{2}-A_{2} t_{1}
\end{array}\right.\right.
$$

3.2 Interaction between two dislocations

3.2.1 parallel screw dislocations

dislocation I at $\left[0,0, x_{3}\right]: \mathbf{b}=[0,0, b], \quad \mathbf{t}=[0,0,1]$
dislocation II at $\left[x, d, x_{3}\right]: \mathbf{b}=[0,0, b], \quad \mathbf{t}=[0,0,1]$
Force acting on dislocation II from dislocation I (from Eqs. (3.3))

$$
\begin{aligned}
& f_{1}=A_{2} t_{3}-A_{3} t_{2}=A_{2}=\sigma_{32} b \\
& f_{2}=A_{3} t_{1}-A_{1} t_{3}=-A_{1}=-\sigma_{31} b
\end{aligned}
$$

Fig. 2.3 two parallel screw dislocations

$$
f_{3}=A_{1} t_{2}-A_{2} t_{1}=0
$$

From the above and Eq. (2.2)

$$
\begin{align*}
& \mathbf{f}=\left[f_{1}, f_{2}, f_{3}\right]=\left[\frac{\mu b^{2}}{2 \pi} \frac{x}{x^{2}+d^{2}}, \quad \frac{\mu b^{2}}{2 \pi} \frac{d}{x^{2}+d^{2}}, \quad 0\right] \tag{3.4}\\
& |\mathbf{f}|=\frac{\mu b^{2}}{2 \pi r}, \quad\left(r=\sqrt{x^{2}+d^{2}}\right) \tag{3.5}
\end{align*}
$$

f $\left\{\begin{array}{l}: \text { repulsive (if the two screw dislocations have the same sign) } \\ : \text { attractive (if the two screw dislocations have opposite sign) }\end{array}\right.$

3.2.2 parallel edge dislocations

dislocation I at $\left[0,0, x_{3}\right]: \mathbf{b}=[b, 0,0], \quad \mathbf{t}=[0,0,1]$
dislocation II at $\left[0,0, x_{3}\right]: \mathbf{b}=[b, 0,0], \quad \mathbf{t}=[0,0,1]$

$$
\mathbf{f}=\left[f_{1}, f_{2}, f_{3}\right]=\left[\frac{D x\left(x^{2}-d^{2}\right)}{\left(x^{2}+d^{2}\right)^{2}}, \quad \frac{D d\left(3 x^{2}+d^{2}\right)}{\left(x^{2}+d^{2}\right)^{2}}, \quad 0\right], \quad D \equiv \mu b^{2} /\{2 \pi(1-v)\}
$$

where

$$
D \equiv \pm \mu b^{2} /\{2 \pi(1-v)\}, \quad(+: \text { same sign, }-: \text { opposite sign })
$$

If the slip plane of each dislocation is unchanged, the force component f_{1} determines the interaction.

$$
\begin{equation*}
f_{1}=\frac{D x\left(x^{2}-d^{2}\right)}{\left(x^{2}+d^{2}\right)^{2}} \tag{3.6}
\end{equation*}
$$

same sign : stable when I and II line up vertically opposite sign : stable when I and II are at the 45° position

Fig. 2.4 Force acting on dislocation I from dislocation II

