Lattice Defects and Mechanical Properties of Materials (latter half)

Prof. Masaharu KATO Department of Materials Science and Engineering kato@materia.titech.ac.jp

Chapter 1 Lattice Defects and Dislocations

1.1 Various lattice defects in crystals

Fig. 1.1 Various defects, (a) optical microscopy (about x 50),(b) transmission electron microscopy (about x 50,000), (c) atomic scale (about x 10,000,000)

• structure-sensitive properties: Young's modulus, density, thermal expansion coefficient, etc.

· structure-insensitive properties: mechanical properties

0-D defects (point defects): vacancy, atom,

1-D defects (line defects): dislocation

2-D defects (plane defects): surface, grain boundary, domain boundary, twinning plane

3-D defects (bulk defects): 2nd-phase partilcle, void, crack

Among various lattice defects

 \rightarrow Only the point defects are thermodynamically stable.

1.2 Elastic deformation and plastic deformation

1.2.1 stress-strain curve

Fig. 1.2 Tensile stress-strain curve of a ductile material.

1.2.2 slip deformation of crystals

plastic deformation \rightarrow shear deformation (slip deformation)

Fig. 1.3 Macroscopic plasite deformation occurs by combination of slip.

Fig. 1.4 Slip plane and slip direction for three crystals

Table 1.1Typical slip systems

Crystal	Slip plane	Slip direction
fcc	{111}	<110>
bcc	{110}	<111>
hcp	(0001)	<1120>

slip plane + slip direction = slip system

Problem 1.1

How many {111}<110> slip systems does an fcc crystal have?

Schmid factor

to tell the most preferable slip plane (primary slip plane) among crystallographically equivalent slip systems $\clubsuit F$

 $\begin{cases} \mathbf{F} : \text{tensile force, } A : \text{specimen cross section,} \\ A_{s} : \text{slip plane area, } \mathbf{n} : \text{slip plane normal,} \\ \theta : \text{angle between slip plane normal and force,} \\ \phi : \text{angle between slip direction } \mathbf{d} \text{ and force} \end{cases}$

tensile stress $\sigma = F / A$ slip plane area $A_{\rm s} = A / \cos \theta$ resolved shear stress $\tau = (F \cos \phi) / A_{\rm s} = (F / A) \cos \theta \cos \phi = \sigma \cos \theta \cos \phi$ (1.1)

Schmid factor

 $S_{\rm F} = \cos\theta\cos\phi \qquad (1.2)$

Fig. 1.5 Tensile deformation of a single crystal

critical resolved shear stress (CRSS)

The resolved shear stress above which plastic deformation of the crystal occurs.

Problem 1.2

What is the maximum value of the Schmid factor?

Problem 1.3

For cubic crystals, it is known that the (hkl) plane is perpendicular to the [hkl] direction. Knowing this and using the dot product calculation of vectors, calculate the Schmid factor value for the $(1\overline{1}1)[011]$ slip system when an fcc single crystal is deformed in tension along the [213] direction.

3

1.2.3 slip and dislocations

It is known theoretically that when slip occurs as if both the upper and lower halves of the crystal are rigid, the required CRSS is about 10^3 to 10^4 times larger than that observed experimentallly.

Fig. 1.6 Slip deformation as if crystals are rigid.

Fig.1.7 Motion of a dislocation under the shear stress τ .

Dislocations \rightarrow line defects

b : a vector expressing the amount of slip (shear) created by the motion of a dislocation

A dislocation (line) lies on a slip plane and is defined as a boundary between slipped and not yet slipped regions of the slip plane.

Dislocation density

$$\rho \equiv (\text{total dislocation length in a unit volume}) \quad [\text{m}^{-2}] \quad (1.3)$$

Consider a crystal of height *h*, width *w* and thickness *l*. When *n* dislocations move from left to right as much as *w*, the amount of slip is *nb*. Therefore, the (engineering) shear strain γ becomes $\gamma = nb/h$. When *n* dislocations move as much as *x* instead, the resultant (engineering) shear strain will be

 $\gamma = nb/h \ge (x/w) = nbx/(hw).$ From Eq. (1.2), we have $\rho = nl / hwl = n / hw$. Finallly, we have

$$\gamma = \rho b x \qquad (1.4)$$

Fig. 1.8 Motion of a dislocation and the resultant shear deformation of a crystal.