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Chapter 1 Lattice Defects and Dislocations 
 

1.1 Various lattice defects in crystals 
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Fig. 1.1  Various defects，(a) optical microscopy（about x 50）， 
(b) transmission electron microscopy（about x 50,000），(c) atomic scale（about x 10,000,000） 
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 ・structure-sensitive properties: Young’s modulus, density, thermal expansion coefficient, 
etc. 
・structure-insensitive properties: mechanical properties 
 
0-D defects (point defects): vacancy, atom,  
1-D defects (line defects): dislocation 
2-D defects (plane defects): surface, grain boundary, domain boundary, twinning plane 
3-D defects (bulk defects): 2nd-phase partilcle, void, crack 
 
Among various lattice defects 
  → Only the point defects are thermodynamically stable. 
 
 

1.2  Elastic deformation and plastic deformation 
 
1.2.1  stress-strain curve 
 
uniaxial tensile test 
 
 
 
 
 
 
 
 
 
 
 
1.2.2 slip deformation of crystals 
 
plastic deformation → shear deformation (slip deformation) 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.4  Slip plane and slip direction for three crystals 
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Fig. 1.3  Macroscopic plasitc deformation  
occurs by combination of slip. 
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Fig. 1.2  Tensile stress-strain curve of a ductile material.  
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slip plane  +  slip direction  =  slip system 
 
--------------------------------------------------------------- 
Problem 1.1 
How many {111}<110> slip systems does an fcc crystal have? 
--------------------------------------------------------------- 
 
Schmid factor  
to tell the most preferable slip plane (primary slip plane) among crystallographically 
equivalent slip systems 
 
 F : tensile force,  A : specimen cross section,  
 As : slip plane area,  n : slip plane normal,   
  θ : angle between slip plane normal and force, 
 φ : angle between slip direction d and force 
 
tensile stress  σ = F / A 
slip plane area  AS = A / cos!  
resolved shear stress 
  ! = (F cos") / AS = (F / A)cos# cos" = $ cos# cos"   (1.1) 
 
Schmid factor   SF = cos! cos"     (1.2) 
 
critical resolved shear stress (CRSS) 
  The resolved shear stress above which plastic deformation of the crystal occurs. 
 
--------------------------------------------------------------- 
Problem 1.2 
What is the maximum value of the Schmid factor? 
 
Problem 1.3 
For cubic crystals, it is known that the (h k l)  plane is perpendicular to the [h k l]  direction.  
Knowing this and using the dot product calculation of vectors, calculate the Schmid factor 
value for the (111)[011]  slip system when an fcc single crystal is deformed in tension along 
the [213] direction. 
--------------------------------------------------------------- 

Table 1.1 Typical slip systems 

 Crystal    Slip plane   Slip direction 

fcc       {111}       <110> 

bcc      {110}        <111> 
hcp      (0001)       <1120> 
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Fig. 1.5  Tensile deformation of  
a single crystal 
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1.2.3 slip and dislocations 
 
It is known theoretically that when slip occurs  
as if both the upper and lower halves of the  
crystal are rigid, the required CRSS is about 
103 to 104 times larger than that observed  
experimentallly.  
 
 

Taylor, Orowan, Polanyi (1934)  → Dislocations 
(Yamaguchi (1929)) 

 
 
 
 
 
 
 
 
 
 
 
Dislocations → line defects 
b : a vector expressing the amount of slip (shear) created by the motion of a dislocation  
 
A dislocation (line) lies on a slip plane and is defined as a boundary between slipped and not 
yet slipped regions of the slip plane. 
 
Dislocation density 
 

! " (total dislocation length in a unit volume)  [m-2]     (1.3) 
 
Consider a crystal of height h, width w and thickness l. 
When n dislocations move from left to right as much as w,  
the amount of slip is nb.  Therefore, the (engineering)  
shear strain γ becomes γ = nb/h. 
When n dislocations move as much as x instead, the  
resultant (engineering) shear strain will be  
          γ = nb/h x (x/w) = nbx/(hw). 
From Eq. (1.2), we have 
  ! = nl / hwl = n / hw . 

Finallly, we have 
        ! = "b x       (1.4) 

Fig. 1.6  Slip deformation as if crystals are rigid. 
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Fig. 1.8  Motion of a dislocation and the  
resultant shear deformation of a crystal. 

Fig.1.7 Motion of a dislocation under the shear stress τ. 
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