
Machine Learning
Chapter 4. Algorithms

2

Algorithms: The basic methods

 Simplicity first: 1R
 Use all attributes: Naïve Bayes
 Decision trees: ID3
 Covering algorithms: decision rules: PRISM
 Association rules
 Linear models
 Instance-based learning

4

3

Simplicity first

 Simple algorithms often work very well!
 There are many kinds of simple structure, eg:

 One attribute does all the work
 All attributes contribute equally & independently
 A weighted linear combination might do
 Instance-based: use a few prototypes
 Use simple logical rules

 Success of method depends on the domain

4

Inferring rudimentary
rules

 1R: learns a 1-level decision tree
 I.e., rules that all test one particular attribute

 Basic version
 One branch for each value
 Each branch assigns most frequent class
 Error rate: proportion of instances that don’t

belong to the majority class of their
corresponding branch

 Choose attribute with lowest error rate

(assumes nominal attributes)

5

Pseudo-code for 1R

For each attribute,
For each value of the attribute, make a rule as follows:

count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value

Calculate the error rate of the rules
Choose the rules with the smallest error rate

 Note: “missing” is treated as a separate attribute
value

6

Evaluating the weather
attributes

Attribute Rules Errors Total
errors

Outlook Sunny No 2/5 4/14

Overcast Yes 0/4

Rainy Yes 2/5

Temp Hot No* 2/4 5/14

Mild Yes 2/6

Cool Yes 1/4

Humidity High No 3/7 4/14

Normal Yes 1/7

Windy False Yes 2/8 5/14

True No* 3/6

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No
* indicates a tie

7

Dealing with
numeric attributes

 Discretize numeric attributes
 Divide each attribute’s range into intervals

 Sort instances according to attribute’s values
 Place breakpoints where the class changes

(the majority class)
 This minimizes the total error

 Example: temperature from weather data

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

8

Dealing with
numeric attributes

 Discretize numeric attributes
 Divide each attribute’s range into intervals

 Sort instances according to attribute’s values
 Place breakpoints where the class changes

(the majority class)
 This minimizes the total error

 Example: temperature from weather data

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

Outlook Temperature Humidity Windy Play

Sunny 85 85 False No

Sunny 80 90 True No

Overcast 83 86 False Yes

Rainy 75 80 False Yes

… … … … …

9

The problem of overfitting

 This procedure is very sensitive to noise
 One instance with an incorrect class label will

probably produce a separate interval
 Also: time stamp attribute will have zero

errors
 Simple solution:

enforce minimum number of instances in
majority class per interval

 Example (with min = 3):
64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes | No No Yes Yes Yes | No Yes Yes No

10

With overfitting avoidance

 Resulting rule set:

Attribute Rules Errors Total errors

Outlook Sunny No 2/5 4/14

Overcast Yes 0/4

Rainy Yes 2/5

Temperature 77.5 Yes 3/10 5/14

> 77.5 No* 2/4

Humidity 82.5 Yes 1/7 3/14

> 82.5 and 95.5 No 2/6

> 95.5 Yes 0/1

Windy False Yes 2/8 5/14

True No* 3/6

11

Discussion of 1R
 1R was described in a paper by Holte (1993)

 Contains an experimental evaluation on 16
datasets (using cross-validation so that results
were representative of performance on future
data)

 Minimum number of instances was set to 6
after some experimentation

 1R’s simple rules performed not much worse
than much more complex decision trees

 Simplicity first pays off!

Very Simple Classification Rules Perform Well on Most
Commonly Used Datasets
Robert C. Holte, Computer Science Department, University of Ottawa

12

Discussion of 1R: Hyperpipes

 Another simple technique: build one rule for
each class
 Each rule is a conjunction of tests, one for each

attribute
 For numeric attributes: test checks whether

instance’s value is inside an interval
 Interval given by minimum and maximum observed in

training data

 For nominal attributes: test checks whether
value is one of a subset of attribute values
 Subset given by all possible values observed in

training data

 Class with most matching tests is predicted

13

Statistical modeling

 “Opposite” of 1R: use all the attributes
 Two assumptions: Attributes are

 equally important
 statistically independent (given the class value)

 I.e., knowing the value of one attribute says nothing
about the value of another
(if the class is known)

 Independence assumption is never correct!
 But … this scheme works well in practice

14

Probabilities for
weather data

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

15

Probabilities for
weather data

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

16

Probabilities for
weather data

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?
 A new day:

Likelihood of the two classes

For “yes” = 2/9 3/9 3/9 3/9 9/14 = 0.0053

For “no” = 3/5 1/5 4/5 3/5 5/14 = 0.0206

Conversion into a probability by normalization:

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

17

Bayes’s rule
 Probability of event H given evidence E :

 A priori probability of H :
 Probability of event before evidence is seen

 A posteriori probability of H :
 Probability of event after evidence is seen

]Pr[
]Pr[]|Pr[]|Pr[

E
HHEEH

]|Pr[EH

]Pr[H

Thomas Bayes
Born: 1702 in London, England
Died: 1761 in Tunbridge Wells, Kent, England

18

Naïve Bayes for
classification

 Classification learning: what’s the
probability of the class given an instance?
 Evidence E = instance
 Event H = class value for instance

 Naïve assumption: evidence splits into parts
(i.e. attributes) that are independent

Pr[H | E] Pr[E1 | H]Pr[E2 | H]Pr[En | H]Pr[H]

Pr[E]

19

Weather data example

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?
Evidence E

Probability of
class “yes”

]|Pr[]|Pr[yesSunnyOutlookEyes
]|Pr[yesCooleTemperatur

]|Pr[yesHighHumidity
]|Pr[yesTrueWindy

]Pr[
]Pr[

E
yes

]Pr[
14
9

9
3

9
3

9
3

9
2

E

20

The “zero-frequency
problem”

 What if an attribute value doesn’t occur with every
class value?
(e.g. “Humidity = high” for class “yes”)
 Probability will be zero!
 A posteriori probability will also be zero!

(No matter how likely the other values are!)

 Remedy: add 1 to the count for every attribute
value-class combination (Laplace estimator)

 Result: probabilities will never be zero!
(also: stabilizes probability estimates)

0]|Pr[Eyes
0]|Pr[yesHighHumidity

21

Modified probability
estimates

 In some cases adding a constant different
from 1 might be more appropriate

 Example: attribute outlook for class yes

 Weights don’t need to be equal
(but they must sum to 1)

9

3/2

9

3/4

9

3/3

Sunny Overcast Rainy

9
2 1p

9
4 2p

9

3 3p

22

Missing values

 Training: instance is not included in
frequency count for attribute value-
class combination

 Classification: attribute will be omitted
from calculation

 Example: Outlook Temp. Humidity Windy Play

? Cool High True ?

Likelihood of “yes” = 3/9 3/9 3/9 9/14 = 0.0238

Likelihood of “no” = 1/5 4/5 3/5 5/14 = 0.0343

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%

23

Numeric attributes
 Usual assumption: attributes have a normal

or Gaussian probability distribution (given
the class)

 The probability density function for the
normal distribution is defined by two
parameters:
 Sample mean

 Standard deviation

 Then the density function f(x) is

n

i
ix

n 1

1

n

i
ix

n 1

2)(
1

1

2

2

2
)(

2
1)(

x

exf

24

Statistics for
weather data

 Example density value:

0340.0
2.62

1)|66(2

2

2.62
)7366(

eyesetemperaturf

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 64, 68, 65, 71, 65, 70, 70, 85, False 6 2 9 5

Overcast 4 0 69, 70, 72, 80, 70, 75, 90, 91, True 3 3

Rainy 3 2 72, … 85, … 80, … 95, …

Sunny 2/9 3/5 =73 =75 =79 =86 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 =6.2 =7.9 =10.2 =9.7 True 3/9 3/5

Rainy 3/9 2/5

25

Classifying a new day

 A new day:

 Missing values during training are not
included in calculation of mean and
standard deviation

Outlook Temp. Humidity Windy Play

Sunny 66 90 true ?

Likelihood of “yes” = 2/9 0.0340 0.0221 3/9 9/14 = 0.000036

Likelihood of “no” = 3/5 0.0291 0.0380 3/5 5/14 = 0.000136

P(“yes”) = 0.000036 / (0.000036 + 0. 000136) = 20.9%

P(“no”) = 0.000136 / (0.000036 + 0. 000136) = 79.1%

26

Probability densities

 Relationship between probability and
density:

 But: this doesn’t change calculation of a
posteriori probabilities because cancels
out

 Exact relationship:

)(]
22

Pr[cfcxc

b

a

dttfbxa)(]Pr[

27

Multinomial naïve Bayes I

 Version of naive Bayes used for document
classification using bag of words model

 n1,n2,…,nk: number of times word i occurs in
document

 P1,P2,…,Pk: probability of obtaining word I when
sampling from document in class H

 Probability of observing document E given class H
(based on multinomial distribution):

 Ignores probability of generating a document of
the right length (prob. assumed constant for each
class)

k

i i

n
i

n
PNHE

i

1 !
!]|Pr[knnnN ...21

28

Multinomial naïve Bayes II
 suppose dictionary has two words, yellow and blue
 suppose and
 suppose E is the document “blue yellow blue”
 Probability of observing document:

Suppose there is another class H’ that has
and :

 Need to take prior probability of class into account
to make final classification

 Factorials don’t actually need to be computed
 Underflows can be prevented by using logarithms

14.0
64
9

!2
25.0

!1
75.0!3]|}Pr[{

21

Hblueyellowblue

%75]|Pr[Hyellow %25]|Pr[Hblue

%10]'|Pr[Hyellow %90]'|Pr[Hblue

24.0
!2
9.0

!1
1.0!3]'|}Pr[{

21

Hblueyellowblue

29

Naïve Bayes: discussion

 Naïve Bayes works surprisingly well (even if
independence assumption is clearly violated)

 Why? Because classification doesn’t require
accurate probability estimates as long as maximum
probability is assigned to correct class

 However: adding too many redundant attributes
will cause problems (e.g. identical attributes)

 Note also: many numeric attributes are not
normally distributed (kernel density estimators)

30

Constructing decision
trees

 Strategy: top down
Recursive divide-and-conquer fashion
 First: select attribute for root node

Create branch for each possible attribute value
 Then: split instances into subsets

One for each branch extending from the node
 Finally: repeat recursively for each branch,

using only instances that reach the branch

 Stop if all instances have the same class

31

Which attribute to select?

32

Which attribute to select?

33

Criterion for attribute
selection

 Which is the best attribute?
 Want to get the smallest tree
 Heuristic: choose the attribute that produces

the “purest” nodes

 Popular impurity criterion: information gain
 Information gain increases with the average

purity of the subsets

 Strategy: choose attribute that gives
greatest information gain

34

Computing information

 Measure information in bits
 Given a probability distribution, the info

required to predict an event is the
distribution’s entropy

 Entropy gives the information required
in bits
(can involve fractions of bits!)

 Formula for computing the entropy:

entropy(p1, p2,, pn) p1logp1 p2logp2 pnlogpn

35

Claude Shannon, who has died aged 84, perhaps
more than anyone laid the groundwork for today’s
digital revolution. His exposition of information
theory, stating that all information could be
represented mathematically as a succession of
noughts and ones, facilitated the digital
manipulation of data without which today’s
information society would be unthinkable.

Shannon’s master’s thesis, obtained in 1940 at MIT,
demonstrated that problem solving could be
achieved by manipulating the symbols 0 and 1 in a
process that could be carried out automatically with
electrical circuitry. That dissertation has been
hailed as one of the most significant master’s
theses of the 20th century. Eight years later,
Shannon published another landmark paper, A
Mathematical Theory of Communication, generally
taken as his most important scientific contribution.

Claude Shannon
Born: 30 April 1916
Died: 23 February 2001

“Father of
information theory”

Shannon applied the same radical approach to cryptography research, in which he later
became a consultant to the US government.

Many of Shannon’s pioneering insights were developed before they could be applied in
practical form. He was truly a remarkable man, yet unknown to most of the world.

36

Example: attribute
Outlook

 Outlook = Sunny :

 Outlook = Overcast :

 Outlook = Rainy :

 Expected information for attribute:

bits971.0)5/3log(5/3)5/2log(5/25,3/5)entropy(2/)info([2,3]

bits0)0log(0)1log(10)entropy(1,)info([4,0]

bits971.0)5/2log(5/2)5/3log(5/35,2/5)entropy(3/)info([3,2]

Note: this
is normally
undefined.

971.0)14/5(0)14/4(971.0)14/5([3,2])[4,0],,info([3,2]
bits693.0

37

Computing
information gain

 Information gain: information before
splitting – information after splitting

 Information gain for attributes from
weather data:

gain(Outlook) = 0.247 bits
gain(Temperature) = 0.029 bits
gain(Humidity) = 0.152 bits
gain(Windy) = 0.048 bits

gain(Outlook) = info([9,5]) – info([2,3],[4,0],[3,2])
= 0.940 – 0.693
= 0.247 bits

38

Continuing to split

gain(Temperature) = 0.571 bits
gain(Humidity) = 0.971 bits
gain(Windy) = 0.020 bits

39

Final decision tree

 Note: not all leaves need to be pure;
sometimes identical instances have
different classes
 Splitting stops when data can’t be split any

further

40

Wishlist for a purity
measure

 Properties we require from a purity
measure:
 When node is pure, measure should be zero
 When impurity is maximal (i.e. all classes

equally likely), measure should be maximal
 Measure should obey multistage property (i.e.

decisions can be made in several stages):

 Entropy is the only function that satisfies all
three properties!

,4])measure([3(7/9),7])measure([2,3,4])measure([2

41

Properties of the entropy

 The multistage property:

 Simplification of computation:

 Note: instead of maximizing info gain we
could just minimize information

)entropy()()entropy()entropy(
rq

r,
rq

qrqrp,qp,q,r

)9/4log(9/4)9/3log(9/3)9/2log(9/2])4,3,2([info
9/]9log94log43log32log2[

42

Highly-branching
attributes

 Problematic: attributes with a large number
of values (extreme case: ID code)

 Subsets are more likely to be pure if there
is a large number of values
 Information gain is biased towards choosing

attributes with a large number of values
 This may result in overfitting (selection of an

attribute that is non-optimal for prediction)

 Another problem: fragmentation

43

Weather data with ID code
ID code Outlook Temp. Humidity Windy Play

A Sunny Hot High False No

B Sunny Hot High True No

C Overcast Hot High False Yes

D Rainy Mild High False Yes

E Rainy Cool Normal False Yes

F Rainy Cool Normal True No

G Overcast Cool Normal True Yes

H Sunny Mild High False No

I Sunny Cool Normal False Yes

J Rainy Mild Normal False Yes

K Sunny Mild Normal True Yes

L Overcast Mild High True Yes

M Overcast Hot Normal False Yes

N Rainy Mild High True No

44

Tree stump for ID code
attribute

 Entropy of split:

 Information gain is maximal for ID code
(namely 0.940 bits)

info("ID code") info([0,1]) info([0,1]) info([0,1]) 0 bits

45

Gain ratio

 Gain ratio: a modification of the information
gain that reduces its bias

 Gain ratio takes number and size of
branches into account when choosing an
attribute
 It corrects the information gain by taking the

intrinsic information of a split into account
 Intrinsic information: entropy of distribution

of instances into branches (i.e. how much
info do we need to tell which branch an
instance belongs to)

46

Computing the gain ratio

 Example: intrinsic information for ID code

 Value of attribute decreases as intrinsic
information gets larger

 Definition of gain ratio:

 Example:

info([1,1,,1) 14 (1/14 log1/14) 3.807 bits

)Attribute"info("intrinsic_
)Attribute"gain(")Attribute"("gain_ratio

246.0
bits3.807
bits0.940)ID_code"("gain_ratio

47

Gain ratios for weather
data

Outlook Temperature

Info: 0.693 Info: 0.911

Gain: 0.940-0.693 0.247 Gain: 0.940-0.911 0.029

Split info: info([5,4,5]) 1.577 Split info: info([4,6,4]) 1.362

Gain ratio: 0.247/1.577 0.156 Gain ratio: 0.029/1.557 0.019

Humidity Windy

Info: 0.788 Info: 0.892

Gain: 0.940-0.788 0.152 Gain: 0.940-0.892 0.048

Split info: info([7,7]) 1.000 Split info: info([8,6]) 0.985

Gain ratio: 0.152/1 0.152 Gain ratio: 0.048/0.985 0.049

48

More on the gain ratio

 “Outlook” still comes out top
 However: “ID code” has greater gain ratio

 Standard fix: ad hoc test to prevent splitting
on that type of attribute

 Problem with gain ratio: it may
overcompensate
 May choose an attribute just because its

intrinsic information is very low
 Standard fix: only consider attributes with

greater than average information gain

49

Discussion

 Top-down induction of decision trees: ID3,
algorithm developed by Ross Quinlan
 Gain ratio just one modification of this basic

algorithm
 C4.5: deals with numeric attributes, missing

values, noisy data
 Similar approach: CART
 There are many other attribute selection

criteria!
(But little difference in accuracy of result)

50

Covering algorithms

 Convert decision tree into a rule set
 Straightforward, but rule set overly complex
 More effective conversions are not trivial

 Instead, can generate rule set directly
 for each class in turn find rule set that covers

all instances in it
(excluding instances not in the class)

 Called a covering approach:
 at each stage a rule is identified that “covers”

some of the instances

51

Example: generating a rule

y

x

a

b b

b

b

b

b
b

b

b b b
b

b
b

a a
aa

a
y

a

b b

b

b

b

b
b

b

b b b
b

b
b

a a
aa

a

x
1·2

y

a

b b

b

b

b

b
b

b

b b b
b

b
b

a a
aa

a

x
1·2

2·6

If x > 1.2
then class = a

If x > 1.2 and y > 2.6
then class = a

If true
then class = a

 Possible rule set for class “b”:

 Could add more rules, get “perfect” rule set

If x 1.2 then class = b
If x > 1.2 and y 2.6 then class = b

52

Rules vs. trees

 Corresponding decision tree:
(produces exactly the same
predictions)

 But: rule sets can be more perspicuous when
decision trees suffer from replicated subtrees

 Also: in multiclass situations, covering algorithm
concentrates on one class at a time whereas
decision tree learner takes all classes into account

53

space of
examples

rule so far

rule after
adding new
term

Simple covering algorithm

 Generates a rule by adding tests that
maximize rule’s accuracy

 Similar to situation in decision trees:
problem of selecting an attribute to split on
 But: decision tree inducer maximizes overall

purity

 Each new test reduces
rule’s coverage:

54

Selecting a test

 Goal: maximize accuracy
 t total number of instances covered by rule
 p positive examples of the class covered by

rule
 t – p number of errors made by rule
 Select test that maximizes the ratio p/t

 We are finished when p/t = 1 or the set of
instances can’t be split any further

55

Example:
contact lens data

 Rule we seek:
 Possible tests:

Age = Young 2/8

Age = Pre-presbyopic 1/8

Age = Presbyopic 1/8

Spectacle prescription = Myope 3/12

Spectacle prescription = Hypermetrope 1/12

Astigmatism = no 0/12

Astigmatism = yes 4/12

Tear production rate = Reduced 0/12

Tear production rate = Normal 4/12

If ?
then recommendation = hard

56

Modified rule and
resulting data

 Rule with best test added:

 Instances covered by modified rule:
Age Spectacle

prescription
Astigmatism Tear production

rate
Recommended
lenses

Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Reduced None
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None

If astigmatism = yes
then recommendation = hard

57

Further refinement

 Current state:

 Possible tests:
Age = Young 2/4

Age = Pre-presbyopic 1/4

Age = Presbyopic 1/4

Spectacle prescription = Myope 3/6

Spectacle prescription = Hypermetrope 1/6

Tear production rate = Reduced 0/6

Tear production rate = Normal 4/6

If astigmatism = yes
and ?

then recommendation = hard

58

Modified rule and
resulting data

 Rule with best test added:

 Instances covered by modified rule:
Age Spectacle

prescription
Astigmatism Tear production

rate
Recommended
lenses

Young Myope Yes Normal Hard
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Normal None

If astigmatism = yes
and tear production rate = normal

then recommendation = hard

59

Further refinement
 Current state:

 Possible tests:

 Tie between the first and the fourth test
 We choose the one with greater coverage

Age = Young 2/2

Age = Pre-presbyopic 1/2

Age = Presbyopic 1/2

Spectacle prescription = Myope 3/3

Spectacle prescription = Hypermetrope 1/3

If astigmatism = yes
and tear production rate = normal
and ?

then recommendation = hard

60

The result

 Final rule:

 Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

 These two rules cover all “hard lenses”:
 Process is repeated with other two classes

If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

61

Pseudo-code for PRISM

For each class C
Initialize E to the instance set
While E contains instances in class C
Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do
For each attribute A not mentioned in R, and each value v,
Consider adding the condition A = v to the left-hand side of R
Select A and v to maximize the accuracy p/t
(break ties by choosing the condition with the largest p)

Add A = v to R
Remove the instances covered by R from E

62

Rules vs. decision lists

 PRISM with outer loop removed generates
a decision list for one class
 Subsequent rules are designed for rules that

are not covered by previous rules
 But: order doesn’t matter because all rules

predict the same class

 Outer loop considers all classes separately
 No order dependence implied

 Problems: overlapping rules, default rule
required

63

Separate and conquer

 Methods like PRISM (for dealing with one
class) are separate-and-conquer
algorithms:
 First, identify a useful rule
 Then, separate out all the instances it covers
 Finally, “conquer” the remaining instances

 Difference to divide-and-conquer methods:
 Subset covered by rule doesn’t need to be

explored any further

64

Association rules

 Association rules…
 … can predict any attribute and combinations

of attributes
 … are not intended to be used together as a

set

 Problem: immense number of possible
associations
 Output needs to be restricted to show only the

most predictive associations only those with
high support and high confidence

65

Support and confidence of
a rule

 Support: number of instances predicted
correctly

 Confidence: number of correct predictions, as
proportion of all instances the rule applies to

 Example: 4 cool days with normal humidity

 Support = 4, confidence = 100%
 Normally: minimum support and confidence

pre-specified (e.g. 58 rules with support 2
and confidence 95% for weather data)

If temperature = cool then humidity = normal

66

Support and confidence of
a rule

 Support: number of instances predicted
correctly

 Confidence: number of correct predictions, as
proportion of all instances the rule applies to

 Example: 4 cool days with normal humidity

 Support = 4, confidence = 100%
 Normally: minimum support and confidence

pre-specified (e.g. 58 rules with support 2
and confidence 95% for weather data)

If temperature = cool then humidity = normal

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

67

Interpreting association
rules

If humidity = high and windy = false and play = no
then outlook = sunny

 Interpretation is not obvious:

is not the same as

 However, it means that the following also holds:

If windy = false and play = no
then outlook = sunny

If windy = false and play = no
then humidity = high

If windy = false and play = no
then outlook = sunny and humidity = high

68

Mining association rules

 Naïve method for finding association rules:
 Use separate-and-conquer method
 Treat every possible combination of attribute

values as a separate class

 Two problems:
 Computational complexity
 Resulting number of rules (which would have

to be pruned on the basis of support and
confidence)

 But: we can look for high support rules
directly!

69

Item sets

 Support: number of instances correctly
covered by association rule
 The same as the number of instances covered

by all tests in the rule (LHS and RHS!)
 Item: one test/attribute-value pair
 Item set : all items occurring in a rule
 Goal: only rules that exceed pre-defined

support
 Do it by finding all item sets with the given

minimum support and generating rules from
them!

70

Item sets for weather
data

One-item sets Two-item sets Three-item sets Four-item sets

Outlook = Sunny (5) Outlook = Sunny
Temperature = Hot (2)

Outlook = Sunny
Temperature = Hot
Humidity = High (2)

Outlook = Sunny
Temperature = Hot
Humidity = High
Play = No (2)

Temperature = Cool (4) Outlook = Sunny
Humidity = High (3)

Outlook = Sunny
Humidity = High
Windy = False (2)

Outlook = Rainy
Temperature = Mild
Windy = False
Play = Yes (2)

… … … …

 In total: 12 one-item sets, 47 two-item
sets, 39 three-item sets, 6 four-item sets
and 0 five-item sets (with minimum support
of two)

71

Item sets for weather
data

One-item sets Two-item sets Three-item sets Four-item sets

Outlook = Sunny (5) Outlook = Sunny
Temperature = Hot (2)

Outlook = Sunny
Temperature = Hot
Humidity = High (2)

Outlook = Sunny
Temperature = Hot
Humidity = High
Play = No (2)

Temperature = Cool (4) Outlook = Sunny
Humidity = High (3)

Outlook = Sunny
Humidity = High
Windy = False (2)

Outlook = Rainy
Temperature = Mild
Windy = False
Play = Yes (2)

… … … …

 In total: 12 one-item sets, 47 two-item
sets, 39 three-item sets, 6 four-item sets
and 0 five-item sets (with minimum support
of two)

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

72

Generating rules from an
item set

 Once all item sets with minimum support
have been generated, we can turn them
into rules

 Example:

 Seven (2N-1) potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)

If Humidity = Normal and Windy = False then Play = Yes
If Humidity = Normal and Play = Yes then Windy = False
If Windy = False and Play = Yes then Humidity = Normal
If Humidity = Normal then Windy = False and Play = Yes
If Windy = False then Humidity = Normal and Play = Yes
If Play = Yes then Humidity = Normal and Windy = False
If True then Humidity = Normal and Windy = False

and Play = Yes

4/4
4/6
4/6
4/7
4/8
4/9

4/12

73

Rules for weather data

 Rules with support > 1 and confidence = 100%:

 In total:
3 rules with support four
5 with support three

50 with support two

Association rule Sup. Conf.

1 Humidity=Normal Windy=False Play=Yes 4 100%

2 Temperature=Cool Humidity=Normal 4 100%

3 Outlook=Overcast Play=Yes 4 100%

4 Temperature=Cold Play=Yes Humidity=Normal 3 100%

...

58 Outlook=Sunny Temperature=Hot Humidity=High 2 100%

74

Example rules from the
same set

 Item set:

 Resulting rules (all with 100% confidence):

due to the following “frequent” item sets:

Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

Temperature = Cool, Windy = False Humidity = Normal, Play = Yes
Temperature = Cool, Windy = False, Humidity = Normal Play = Yes
Temperature = Cool, Windy = False, Play = Yes Humidity = Normal

Temperature = Cool, Windy = False (2)
Temperature = Cool, Humidity = Normal, Windy = False (2)
Temperature = Cool, Windy = False, Play = Yes (2)

75

Generating item sets
efficiently

 How can we efficiently find all frequent
item sets?

 Finding one-item sets easy
 Idea: use one-item sets to generate two-

item sets, two-item sets to generate three-
item sets, …
 If (A B) is frequent item set, then (A) and (B)

have to be frequent item sets as well!
 In general: if X is frequent k-item set, then all

(k-1)-item subsets of X are also frequent
 Compute k-item set by merging (k-1)-item sets

76

Example

 Given: five three-item sets

(A B C), (A B D), (A C D), (A C E), (B C D)

 Lexicographically ordered!

 Candidate four-item sets:

(A B C D) OK because of (B C D)

(A C D E) Not OK because of (C D E)

 Final check by counting instances in
dataset!

 (k –1)-item sets are stored in hash table

77

Generating rules
efficiently

 We are looking for all high-confidence rules
 Support of antecedent obtained from hash

table
 But: brute-force method is (2N-1)

 Better way: building (c + 1)-consequent
rules from c-consequent ones
 Observation: (c + 1)-consequent rule can only

hold if all corresponding c-consequent rules
also hold

 Resulting algorithm similar to procedure for
large item sets

78

Example

 1-consequent rules:

 Corresponding 2-consequent rule:

 Final check of antecedent against hash
table!

If Windy = False and Play = No
then Outlook = Sunny and Humidity = High (2/2)

If Outlook = Sunny and Windy = False and Play = No
then Humidity = High (2/2)

If Humidity = High and Windy = False and Play = No
then Outlook = Sunny (2/2)

79

Association rules:
discussion

 Above method makes one pass through the
data for each different size item set
 Other possibility: generate (k+2)-item sets just

after (k+1)-item sets have been generated
 Result: more (k+2)-item sets than necessary

will be considered but less passes through the
data

 Makes sense if data too large for main memory
 Practical issue: generating a certain number

of rules (e.g. by incrementally reducing min.
support)

80

Other issues

 Standard ARFF format very inefficient for
typical market basket data
 Attributes represent items in a basket and

most items are usually missing
 Need way of representing sparse data

 Instances are also called transactions
 Confidence is not necessarily the best

measure
 Example: milk occurs in almost every

supermarket transaction
 Other measures have been devised (e.g. lift)

81

Linear models

 Work most naturally with numeric attributes
 Standard technique for numeric prediction:

linear regression
 Outcome is linear combination of attributes

 Weights are calculated from the training
data

 Predicted value for first training instance a(1)

kkawawawwx ...22110

k

j
jjkk awawawawaw

0

)1()1()1(
22

)1(
11

)1(
00 ...

82

Minimizing the squared
error

Choose k +1 coefficients to minimize the
squared error on the training data

Squared error:

Derive coefficients using standard matrix
operations

Can be done if there are more instances
than attributes (roughly speaking)

Minimizing the absolute error is more
difficult

2

1 0

)()(

n

i

k

j

i
jj

i awx

83

Classification

 Any regression technique can be used for
classification
 Training: perform a regression for each class,

setting the output to 1 for training instances
that belong to class, and 0 for those that don’t

 Prediction: predict class corresponding to
model with largest output value (membership
value)

 For linear regression this is known as multi-
response linear regression

84

Theoretical justification

}|))({(2 xXYXfEy

}|))|1()|1()({(2 xXYxXYPxXYPXfEy

}|))|1({(})|{)|1((
))|1()((2))|1()((

2

2

xXYxXYPExXYExXYP
xXYPxfxXYPxf

yy

}|))|1({(}|)|1({
))|1()((2))|1()((

2

2

xXYxXYPExXYxXYPE
xXYPxfxXYPxf

yy

}|))|1({())|1()((22 xXYxXYPExXYPxf y

Model Instance
Observed target value (either 0 or 1)

True class probability

ConstantWe want to minimize this

The scheme minimizes this

85

Pairwise regression

 Another way of using regression for
classification:
 A regression function for every pair of classes,

using only instances from these two classes
 Assign output of +1 to one member of the

pair, –1 to the other
 Prediction is done by voting

 Class that receives most votes is predicted
 Alternative: “don’t know” if there is no

agreement
 More likely to be accurate but more

expensive

86

Logistic regression

 Problem: some assumptions violated when
linear regression is applied to classification
problems

 Logistic regression: alternative to linear
regression
 Designed for classification problems
 Tries to estimate class probabilities directly

 Does this using the maximum likelihood method

 Uses this linear model:

Class probability

log P

1 P

 w0a0 w1a1 w2a2 wkak

87

Discussion of linear
models

 Not appropriate if data exhibits non-linear
dependencies

 But: can serve as building blocks for more
complex schemes (i.e. model trees)

 Example: multi-response linear regression
defines a hyperplane for any two given
classes:

(w0
(1) w0

(2))a0 (w1
(1) w1

(2))a1 (w2
(1) w2

(2))a2 (wk
(1) wk

(2))ak 0

88

Instance-based
representation

 Simplest form of learning: rote learning
 Training instances are searched for instance

that most closely resembles new instance
 The instances themselves represent the

knowledge
 Also called instance-based learning

 Similarity function defines what’s “learned”
 Instance-based learning is lazy learning
 Methods:

 nearest-neighbor
 k-nearest-neighbor
 …

89

The distance function

 Simplest case: one numeric attribute
 Distance is the difference between the two

attribute values involved (or a function
thereof)

 Several numeric attributes: normally,
Euclidean distance is used and attributes
are normalized

 Nominal attributes: distance is set to 1 if
values are different, 0 if they are equal

 Are all attributes equally important?
 Weighting the attributes might be necessary

90

Instance-based learning

Distance function defines what’s learned
Most instance-based schemes use Euclidean

distance:

a(1) and a(2): two instances with k attributes
Taking the square root is not required when

comparing distances
Other popular metric: city-block metric
Adds differences without squaring them

2)2()1(2)2(
2

)1(
2

2)2(
1

)1(
1)(...)()(kk aaaaaa

91

Normalization and other
issues

 Different attributes are measured on
different scales need to be normalized:

vi : the actual value of attribute i
 Nominal attributes: distance either 0 or 1
 Common policy for missing values:

assumed to be maximally distant (given
normalized attributes)

ii

ii
i vv

vva
minmax

min

92

Discussion of 1-NN

Often very accurate
… but slow:
simple version scans entire training data to derive

a prediction
Assumes all attributes are equally important
Remedy: attribute selection or weights

Possible remedies against noisy instances:
Take a majority vote over the k nearest neighbors
Removing noisy instances from dataset (difficult!)

Statisticians have used k-NN since early 1950s
If n and k/n 0, error approaches minimum

93

Clustering

 Clustering techniques apply when there is no class
to be predicted

 Aim: divide instances into “natural” groups
 As we have seen clusters can be:

 disjoint vs. overlapping
 deterministic vs. probabilistic
 flat vs. hierarchical

 We will look at a classic algorithm called k-means
 k-means clusters are disjoint, deterministic, and flat

94

The k-means algorithm

 To cluster data into k groups: (k is
predefined)

1. Choose k cluster centers
 e.g. at random

2. Assign instances to clusters
 based on distance to cluster centers

3. Compute centroids of clusters
4. Go to step 1

 until convergence

95

Discussion

 Algorithm minimizes squared distance to
cluster centers

 Result can vary significantly
 based on initial choice of seeds

 Can get trapped in local minimum
 Example:

 To increase chance of finding global
optimum: restart with different random
seeds

 Can we applied recursively with k=2

instances

initial cluster centers

96

Comments on basic
methods

 Bayes’ rule stems from his “Essay towards
solving a problem in the doctrine of chances”
(1763)
 Difficult bit: estimating prior probabilities

 Extension of Naïve Bayes: Bayesian Networks
 Algorithm for association rules is called

APRIORI
 Minsky and Papert (1969) showed that linear

classifiers have limitations, e.g. can’t learn
XOR
 But: combinations of them can (Neural Nets)

