Machine Learning Chapter 3. Output

Output: Knowledge representation

Decision tables

3

- Decision trees
- Decision rules
- Association rules
- Rules with exceptions
- Rules involving relations
- Linear regression
- Trees for numeric prediction
- Instance-based representation
- Clusters

Output: representing structural patterns

- Many different ways of representing patterns
 Decision trees, rules, instance-based, ...
- Also called "knowledge" representation
- Representation determines inference method
- Understanding the output is the key to understanding the underlying learning methods
- Different types of output for different learning problems (e.g. classification, regression, ...)

Decision tables

Simplest way of representing output:Use the same format as input!

Decision table for the weather problem:

Outlook	Humidity	Play
Sunny	High	No
Sunny	Normal	Yes
Overcast	High	Yes
Overcast	Normal	Yes
Rainy	High	No
Rainy	Normal	No

Main problem: selecting the right attributes

Decision trees

- "Divide-and-conquer" approach produces tree
- Nodes involve testing a particular attribute
- Usually, attribute value is compared to constant
- Other possibilities:
 - Comparing values of two attributes
 - □Using a function of one or more attributes
- Leaves assign classification, set of classifications, or probability distribution to instances
- Unknown instance is routed down the tree

Nominal and numeric attributes

- ✤Nominal:
 - number of children usually equal to number values
 ⇒ attribute won't get tested more than once
 Other possibility: division into two subsets
- ✤Numeric:
 - test whether value is greater or less than constant
 - \Rightarrow attribute may get tested several times
 - Other possibility: three-way split (or multi-way split)
 - Integer: less than, equal to, greater than
 - Real: *below, within, above*

Missing values

- Does absence of value have some significance?
- Yes \Rightarrow "missing" is a separate value
- ✤ No ⇒ "missing" must be treated in a special way
 - Solution A: assign instance to most popular branch
 - □ Solution B: split instance into pieces
 - Pieces receive weight according to fraction of training instances that go down each branch
 - Classifications from leave nodes are combined using the weights that have percolated to them

Classification rules

- Popular alternative to decision trees
- Antecedent (pre-condition): a series of tests (just like the tests at the nodes of a decision tree)
- Tests are usually logically ANDed together (but may also be general logical expressions)
- Consequent (conclusion): classes, set of classes, or probability distribution assigned by rule
- Individual rules are often logically ORed together
 - □ Conflicts arise if different conclusions apply

From trees to rules

- Easy: converting a tree into a set of rules
 One rule for each leaf:
 - Antecedent contains a condition for every node on the path from the root to the leaf
 - Consequent is class assigned by the leaf
- Produces rules that are unambiguous
 - Doesn't matter in which order they are executed
- But: resulting rules are unnecessarily complex
 - □ Pruning to remove redundant tests/rules

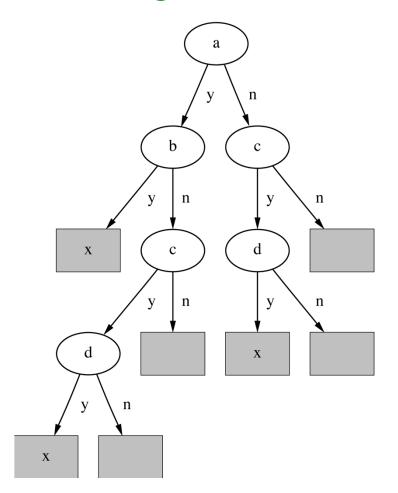
From rules to trees

- More difficult: transforming a rule set into a tree
 - Tree cannot easily express disjunction between rules
- Example: rules which test different attributes

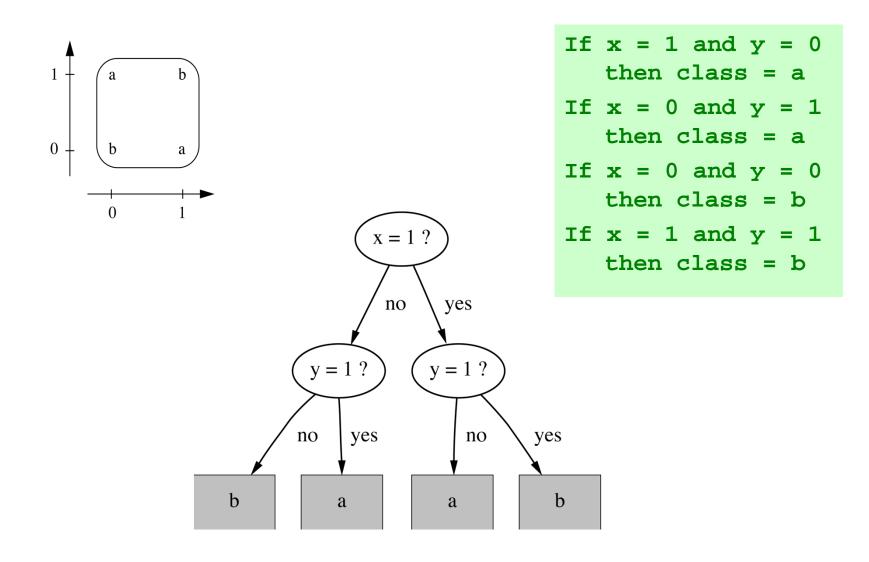
If a and b then x If c and d then x

- Symmetry needs to be broken
- ♦ Corresponding tree contains identical subtrees (⇒ "replicated subtree problem")

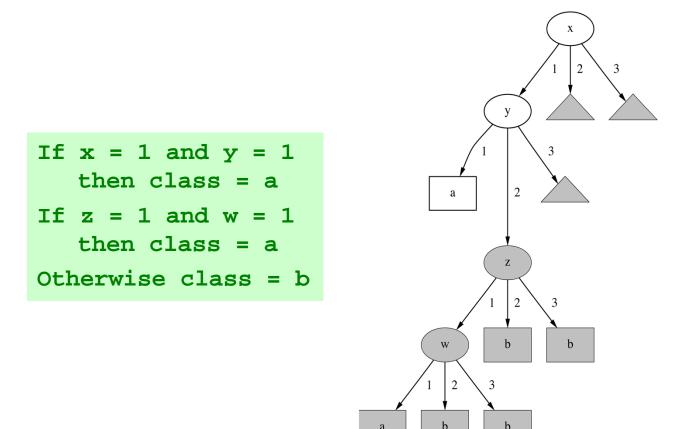
A tree for a simple disjunction



The exclusive-or problem



A tree with a replicated subtree



"Nuggets" of knowledge

- Are rules independent pieces of knowledge? (It seems easy to add a rule to an existing rule base.)
- Problem: ignores how rules are executed
- Two ways of executing a rule set:
 - Ordered set of rules ("decision list")
 - Order is important for interpretation
 - Unordered set of rules
 - Rules may overlap and lead to different conclusions for the same instance

Interpreting rules

What if two or more rules conflict?

- Give no conclusion at all?
- Go with rule that is most popular on training data?
- **.**...
- What if no rule applies to a test instance?
 - Give no conclusion at all?
 - Go with class that is most frequent in training data?
 - **—** ...

Special case: boolean class

- Assumption: if instance does not belong to class "yes", it belongs to class "no"
- Trick: only learn rules for class "yes" and use default rule for "no"

```
If x = 1 and y = 1 then class = a
If z = 1 and w = 1 then class = a
Otherwise class = b
```

- Order of rules is not important. No conflicts!
- Rule can be written in *disjunctive normal* form

Association rules

- Association rules...
 - can predict any attribute and combinations of attributes
 - In the set of the s
- Problem: immense number of possible associations
 - Output needs to be restricted to show only the most predictive associations => only those with high *support* and high *confidence*

Support and confidence of a rule

- Support: number of instances predicted correctly
- Confidence: number of correct predictions, as proportion of all instances that rule applies to
- \$ Example: 4 cool days with normal humidity
 if temperature = cool then humidity = normal
 \$\$Support = 4, confidence = 100%\$
- ♦ Normally: minimum support and confidence pre-specified (e.g. 58 rules with support ≧ 2 and confidence ≧ 95% for weather data)

Interpreting association rules

Interpretation is not obvious:

is not the same as

if windy = false and play = no then outlook = sunny

- if windy = false and play = no then humidity = high
- However, it means that the following also holds:
- if humidity = high and windy = false and play = no
 then outlook = sunny

Rules with exceptions

Idea: allow rules to have exceptions

Example: rule for iris data

if petal-length $\geqq 2.45$ and petal-length < 4.45 then Iris-versicolor

✤ New instance:

Sepal	Sepal	Petal	Petal	Туре
length	width	length	width	
5.1	3.5	2.6	0.2	lris-setosa

Modified rule:

if petal-length ≧ 2.45 and petal-length < 4.45 then Iris-versicolor EXCEPT if petal-width < 1.0 then Iris-setosa

A more complex example

Exceptions to exceptions to exceptions ...

```
default: Iris-setosa
except if petal-length ≥ 2.45 and petal-length < 5.355
and petal-width < 1.75
then Iris-versicolor
    except if petal-length ≥ 4.95 and petal-width < 1.55
    then Iris-virginica
    else if sepal-length < 4.95 and sepal-width ≥ 2.45
    then Iris-virginica
else if petal-length ≥ 3.35
then Iris-virginica
    except if petal-length < 4.85 and sepal-length < 5.95
    then Iris-versicolor</pre>
```

Advantages of using exceptions

- Rules can be updated incrementally
 - **Easy to incorporate new data**
 - □ Easy to incorporate domain knowledge
- People often think in terms of exceptions
- Each conclusion can be considered just in the context of rules and exceptions that lead to it
 - Locality property is important for understanding large rule sets
 - □ "Normal" rule sets don't offer this advantage

More on exceptions

- "Default ... except if ... then ..."
 is logically equivalent to
 "if ... then ... else"
 (where the else specifies what the default did)
- But: exceptions offer a psychological advantage
 - Assumption: defaults and tests early on apply more widely than exceptions further down
 - □ Exceptions reflect special cases

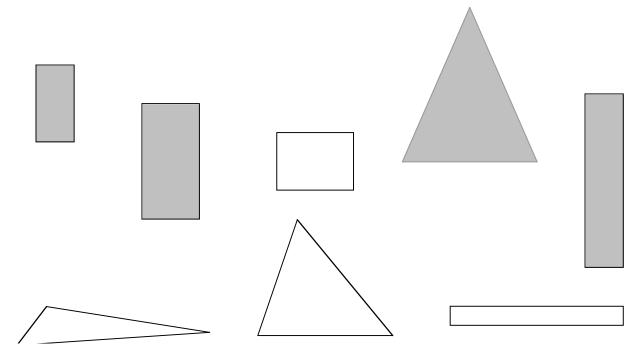
Rules involving relations

- So far: all rules involved comparing an attribute-value to a constant (e.g. temperature < 45)</p>
- These rules are called "propositional" because they have the same expressive power as propositional logic
- What if problem involves relationships between examples (e.g. family tree problem from above)?
 - □ Can't be expressed with propositional rules
 - □ More expressive representation required

The shapes problem

Target concept: standing up

Shaded: standing Unshaded: lying



A propositional solution

1	Width	Height	Sides	Class
	2	4	4	Standing
	3	6	4	Standing
	4	3	4	Lying
	7	8	3	Standing
	7	6	3	Lying
	2	9	4	Standing
	9	1	4	Lying
	10	2	3	Lying

```
If width ≥ 3.5 and height < 7.0
   then lying
If height ≥ 3.5 then standing</pre>
```

A relational solution

Comparing attributes with each other

If width > height then lying If height > width then standing

- Generalizes better to new data
- Standard relations: =, <, >
- But: learning relational rules is costly
- Simple solution: add extra attributes
 (e.g. a binary attribute is width < height?)</pre>

Rules with variables

Using variables and multiple relations:

```
If height_and_width_of(x,h,w) and h > w
    then standing(x)
```

- The top of a tower of blocks is standing:
 - If height_and_width_of(x,h,w) and h > w
 and is_top_of(x,y)
 then standing(x)
- The whole tower is standing:
 - If is_top_of(x,z) and height_and_width_of(z,h,w) and h > w and is_rest_of(x,y)and standing(y) then standing(x) If empty(x) then standing(x)
- Recursive definition!

Inductive logic programming

- Recursive definition can be seen as logic program
- Techniques for learning logic programs stem from the area of "inductive logic programming" (ILP)
- But: recursive definitions are hard to learn
 - □ Also: few practical problems require recursion
 - Thus: many ILP techniques are restricted to non-recursive definitions to make learning easier

Trees for numeric prediction

- Regression: the process of computing an expression that predicts a numeric quantity
- Regression tree: "decision tree" where each leaf predicts a numeric quantity

Predicted value is average value of training instances that reach the leaf

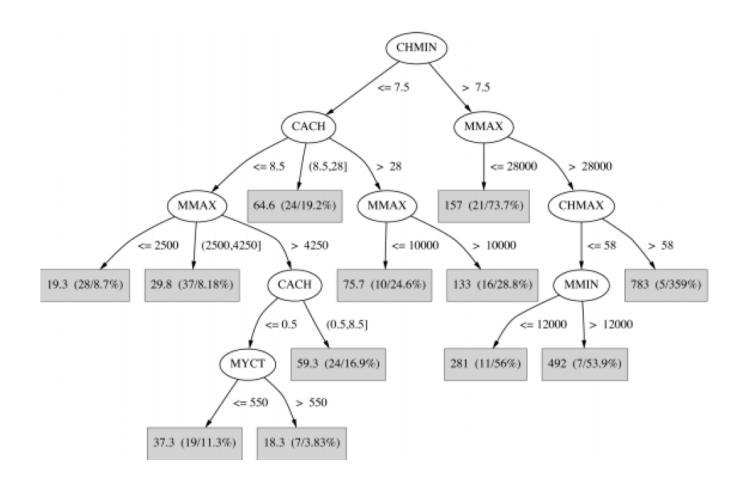
- Model tree: "regression tree" with linear regression models at the leaf nodes
 - Linear patches approximate continuous function

Linear regression for the CPU data

PRP = -56.1

- + 0.049 MYCT
- + 0.015 MMIN
- + 0.006 MMAX
- + 0.630 CACH
- 0.270 CHMIN
- + 1.46 CHMAX

Regression tree for the CPU data



Model tree for the CPU data



Instance-based representation

Simplest form of learning: rote learning

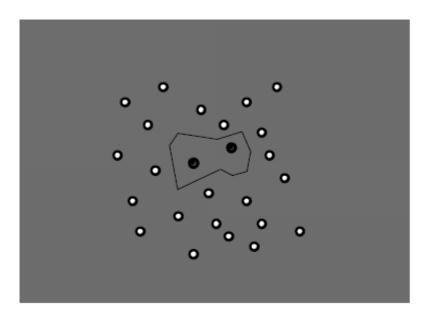
- Training instances are searched for instance that most closely resembles new instance
- The instances themselves represent the knowledge
- □ Also called *instance-based* learning
- Similarity function defines what's "learned"
- Instance-based learning is *lazy* learning
- Methods: nearest-neighbor, k-nearestneighbor, ...

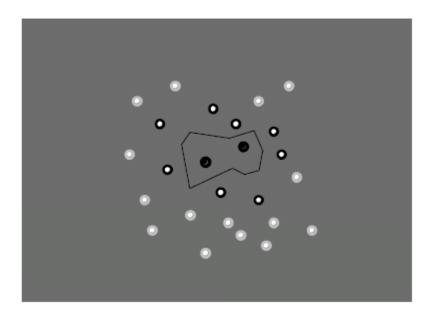
The distance function

Simplest case: one numeric attribute

- Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
 Weighting the attributes might be necessary

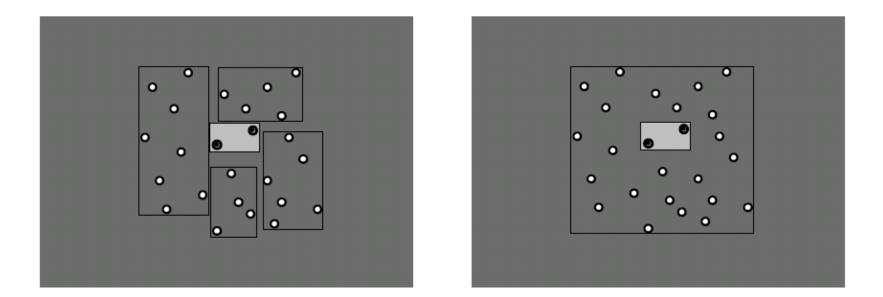
Learning prototypes





- Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- Idea: only use *prototypical* examples

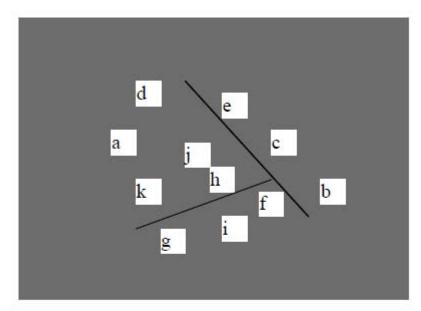
Rectangular generalizations



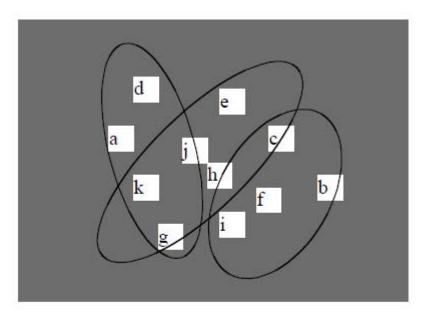
- Nearest-neighbor rules is used outside rectangles
- Rectangles are rules! (But they can be more conservative than "normal" rules.)
- Nested rectangles are rules with exceptions

Representing clusters I

Simple 2-D representation



Venn diagram



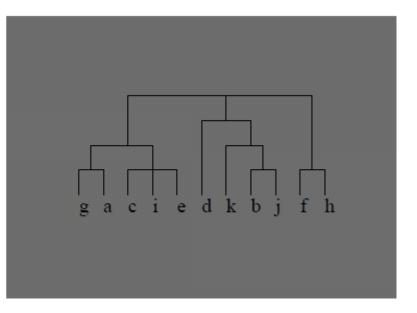
Overlapping clusters

Representing clusters II

Probabilistic assignment

	1	2	3	
a	0.4	0.1	0.5	
b	0.1	0.8	0.1	
с	0.3	0.3	0.4	
d	0.1	0.1	0.8	
е	0.4	0.2	0.4	
f	0.1	0.4	0.5	
g	0.7	0.2	0.1	
h	0.5	0.4	0.1	

Dendrogram



NB: dendron is the Greek word for tree