
VLSI System Design
Part III : Technology Mapping (3)

Oct.2006 - Feb.2007

Lecturer : Tsuyoshi Isshiki
Dept. Communications and Integrated Systems,

Tokyo Institute of Technology

isshiki@vlsi.ss.titech.ac.jp
http://www.vlsi.ss.titech.ac.jp/~isshiki/VLSISystemDesign/top.html

mailto:isshiki@vlsi.ss.titech.ac.jp

Timing-Driven Technology Mapping (1)

1. Input :
– Circuit description : Boolean Network (DAG)
– Timing Constraints : Maximum arrival time from primary inputs to

primary outputs (often corresponding to maximum clock period)
2. Output :

– Technology-mapped gate-level netlist satisfying the specified
timing constraints with minimum circuit area

3. Computation flow
– Partition the target DAG into trees, leaf-DAGs or cones (call this

the circuit blocks)
– At each circuit block : delay-optimal tree covering
– At each connections between circuit blocks (multiple fan-out

nets) : fan-out optimization
– Nodes on non-critical paths : area recovery
– Paths with timing violations : Boolean Network restructuring

Timing-Driven Technology Mapping (2)

Primary outputs
(output pins, register inputs)

Primary inputs
(input pins, register outputs)

Tree / leaf-DAG / cone

Delay-optimal
tree covering
(assume 0 arrival time at
each leaf inputs)

Timing-Driven Technology Mapping (3)

Calculate required
times at leaf inputs
on trees connecting
to the primary outputs
(1st level trees)

Required time at primary output :
Maximum clock period

Timing-Driven Technology Mapping (4)

Fan-out tree (1st level)
Fan-out optimization
at the leaf inputs of
1st level trees
(maximize required
times at the source of
multiple fan-out nets)

Timing-Driven Technology Mapping (5)

Calculate required
times at leaf inputs on
trees connecting to 1st

level fan-out trees
(2nd level trees)

Timing-Driven Technology Mapping (6)

Fan-out tree (2nd level)
Fan-out optimization
at the leaf inputs of
2nd level trees

Continue towards the
primary inputs until all
multiple fan-out nets
have been evaluated.

Timing-Driven Technology Mapping (7)

Compute arrival
times and slack
times at each node

Arrival time at primary inputs : 0

Timing-Driven Technology Mapping (8)

Area recovery on
non-critical path
nodes

In case of timing
violations, do another
pass of delay-optimal
tree covering and fan-
out optimization on
currently evaluated
arrival time values

Primary outputs
(output pins, register inputs)

Primary inputs
(input pins, register outputs)

Buffer Cells for Fan-out Trees

INV
INVP

INV0
2

cell name areasymbol

3

gate
load

12

switching
delay

4

output
transition

coef

3 6 12 2

2 2 12 6

INV0

INV

INV

INVP
12 + 6 * 3 + 12 = 42

12 + 4 * 6 + 12 = 48

switching
delay

gate
load

2

3

area

3

5

output
transition

coef

4

2

BUF1

BUF2

Fan-Out Optimization

• Fan-out optimization： Construct a fan-out tree which maximize the
required time Rr at the net source r on following conditions

– Net source r :
• Output transition coefficient : Tr

(Switching delay Sr is not really needed in the optimization)
– Buffer cell bj :

• Gate load : Lbj
• Switching delay : Sbj
• Output transition coefficient : Tbj

– Sink i (i = 1, 2, … n)
• Gate load : Li
• Required time Ri

b1
Lb1 = 2
Sb1 = 42
Tb1 = 4

b2
Lb2 = 3
Sb2 = 48
Tb2 = 2

Tr = 4
Sr = 12 R0 = 132, L0 = 2

R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

Rr = 8

R0 = 132, L0 = 2

Rr = 22
R1 = 139, L1 = 4

R’0

R’1

R’2

D’r = 48

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

R6 = 164, L6 = 3
Dr = 124

Tr = 4
Sr = 12 b2

b2

b2

Lall = 28

Balanced Fan-Out Tree (1)
• Assumptions :

– Required times at all sinks are identical. (Ex. clock signals)
– Fan-out tree is balanced with a height of M.
– Use only one type of buffer cell b.

• Compute the optimal number of buffers at each level of the tree.
(nk : number of buffers at kth level, nk > 0)
– The nk buffers at kth level can be modeled as a single buffer with

the gate load nk Lb, switching delay Sk and output transition Tb /nk

source r

sink s0

sink si

sink sN – 1

1st level
2nd level M th level

n1
n2 nM

Lb
Sb
Tb

Σ sisource r

b × n1 b × n2 b × nM

n1 Lb
Sb
Tb / n1

n2 Lb
Sb
Tb / n2

nM Lb
Sb
Tb / nM

Balanced Fan-Out Tree (2)

Delay from source to each sink (Lall : sum of all sink loads):
DM = Tr (n1Lb) +Sb+ (Tb/n1)(n2Lb) +Sb+ (Tb/n2)(n3Lb) + … + (Tb / nM) Lall

= Tr (n1Lb) + (Tb/n1)(n2Lb) + (Tb/n2)(n3Lb) + … + (Tb / nM) Lall +M⋅ Sb

Partial derivative on DM with respect to each nk :
∂ DM / ∂ n1 = Tr Lb – TbLb n2 / n1

2 = 0 ⇒ n1
2 = n2Tb / Tr

∂ DM / ∂ n2 = TbLb / n1 – TbLb n3 / n2
2 = 0 ⇒ n2

2 = n1n3 ⇒ n2/n1 = n3/n2

∂ DM / ∂ n3 = TbLb / n2 – TbLb n4 / n3
2 = 0 ⇒ n3

2 = n2n4 ⇒ n3/n2 = n4/n3

: : : :
∂ DM / ∂ nM = TbLb / nM–1 – TbLall / nM

2 = 0 ⇒ nM
2 = nM–1Lall / Lb

Σ sisource r

b × nM

n1 Lb
Sb
Tb / n1

n2 Lb
Sb
Tb / n2

nM Lb
Sb
Tb / nM

b × n1 b × n2 b × n3

n3 Lb
Sb
Tb / n3

Balanced Fan-Out Tree (3)

The number of buffers at k-th level nk when DM is minimum:
n1

2 = n2Tb / Tr

n2/n1 = n3/n2 = n4/n3 =… nM /nM – 1 = r
nM

2 = nM–1Lall / Lb

→ n1 = r (Tb / Tr) , nM = (1 / r) (Lall / Lb) ∴ n1 nM = (Tb / Tr) (Lall / Lb)
n1 = n2 / r = n3 / r 2 = … = nM / r M – 1 ∴ nM = n1r M – 1

→ n1 nM = n1
2 r M – 1 = (Tb / Tr)2 r M + 1 = (Tb / Tr) (Lall / Lb)

→ r M+1 = (Tr / Tb) (Lall / Lb)

→ r = (Tr Lall / Tb Lb) 1 / (M + 1)

→ nk = (Tb / Tr) (Tr Lall / Tb Lb) k / (M + 1)

Two-Level Tree (1)
• Two-level tree：Restrict the tree height to be 1 (M = 1)

Delay from source to each sink :
D = Tr (n1Lb)+Sb+(Tb / n1)Lall

n1 when D is minimized : n1 = (Tb Lall /Tr Lb)1/2

Use only one type of buffer
Even with this restricted tree structure, this optimization problem is NP-
complete.

• Two-level tree algorithm :
1. Sort the sinks in the increasing order of their required times (in case of a tie,

the decreasing order of the gate load)
2. Set n1 = ⎡(Tb Lall /Tr Lb)1/2⎤.
3. Allocate each sink (in the sorted order) to one of the n1 buffers

Choose the allocation which maximizes the required time at the source node.
4. Compute the two-level tree for each buffer cell type, and choose the fastest.
5. This is a greedy algorithm which do not guarantee optimality, but is a

baseline algorithm for other more sophisticated methods.

Two-Level Tree (2)
Lb = 3
Sb = 48
Tb = 2

Tr = 4

Lall = 28
Optimal number of buffer cells :
n1 = ⎡(Tb Lall /Tr Lb)1/2⎤

= ⎡(56 / 12)1/2⎤
= ⎡2.16⎤ = 3

R0 = 132, L0 = 2

Required time :
Rr = R0 – Dr

= 132 – 124 = 8

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

Sr = 12

Rr = 32

Rr = MIN { R’0 , R’1, R’2 } – D’r
= 80 – 48 = 32

Delay (buffered):
D’r = Tr * Lb * n1 + Sr

= 4 * 3 * 3 + 12 = 48

Delay :
Dr = Tr * Lall + Sr

= 4 * 28 + 12 = 124

R’0 = Rmin0 – Tb * L’0 – Sb
= 132 – 2 * 2 – 48 = 80

R’0

Rr = 8

R’1 = R’2 = ∞

R’1

R’2
D’r = 48 buf Rmini L’i R’i

0 132 2

0

0

80

1 ∞ ∞

2 ∞ ∞

Rmini : earliest required time
among the child nodes of buffer i
L’i : total load connected at buffer i
R’i : required time at buffer i

R’i = Rmini – Tb * L’i - Sb

MIN { R’0 , R’1, R’2 } = 80

Dr = 124

Two-Level Tree (3)

Lb = 3
Sb = 48
Tb = 2

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

buf Rmini L’i R’i
0 132 6

0

0

72

1 ∞ ∞

2 ∞ ∞

R0 = 132, L0 = 2

Rr = 24
R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

R0 = 132, L0 = 2

Rr = 32

R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

MIN { R’0 , R’1, R’2 } = 80

R’i = Rmini – Tb * L’i - Sb

MIN { R’0 , R’1, R’2 } = 72

This is a better allocation

buf Rmini L’i R’i
0 132 2

4

0

80

1 139 83

2 ∞ ∞

Two-Level Tree (4)

Lb = 3
Sb = 48
Tb = 2

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

R0 = 132, L0 = 2

Rr = 32

R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

buf Rmini L’i R’i
0 132 2

4

6

80

1 139 83

2 142 82

MIN { R’0 , R’1, R’2 } = 80

R2 = 142, L2 = 6

R0 = 132, L0 = 2

Rr = 29
R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

MIN { R’0 , R’1, R’2 } = 77

R2 = 142, L2 = 6

R3 = 146, L3 = 3

buf Rmini L’i R’i
0 132 2

7

6

80

1 139 77

2 142 82

Two-Level Tree (5)

Lb = 3
Sb = 48
Tb = 2

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

R0 = 132, L0 = 2

Rr = 22
R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

buf Rmini L’i R’i
0 132 2

7

12

80

1 139 77

2 142 70

MIN { R’0 , R’1, R’2 } = 70

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R0 = 132, L0 = 2

Rr = 22
R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

MIN { R’0 , R’1, R’2 } = 70

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

buf Rmini L’i R’i
0 132 6

7

12

72

1 139 77

2 142 70

Two-Level Tree (6)

Lb = 3
Sb = 48
Tb = 2

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

R0 = 132, L0 = 2

Rr = 22
R1 = 139, L1 = 4

R’0

R’1

R’2

D’r = 48

buf Rmini L’i R’i
0 132 6

10

12

72

1 139 71

2 142 70

MIN { R’0 , R’1, R’2 } = 70

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

R6 = 164, L6 = 3 IS THIS OPTIMAL???

Two-Level Tree (7)

R0 = 132, L0 = 2

Rr = 23
R1 = 139, L1 = 4

R’0

R’1

R’2

D’r = 48

buf Rmini L’i R’i
0 132 6

10

12

72

1 139 71

2 146 74
MIN { R’0 , R’1, R’2 } = 71

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

R6 = 164, L6 = 3

R0 = 132, L0 = 2

Rr = 24
R1 = 139, L1 = 4

R’0

R’1

R’2

D’r = 48

MIN { R’0 , R’1, R’2 } = 72

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

R6 = 164, L6 = 3

ACTUALLY, there are better solutions….

buf Rmini L’i R’i
0 132 6

10

12

72

1 142 74

2 146 74

Combinational Merging (1)

• Construction of general tree using multiple types of
buffer cells

• Basic idea :
Incrementally insert buffer cells and connect the k sink nodes
with the largest required times. (This expects that the effect of
load reduction due to buffer insertion is larger than the penalty
of added delays for these least critical sink nodes)
k is determined by the two-level tree equation (instead of
determining the optimal number of buffer cells, compute the
optimal amount of loads the buffer should drive).
Inserted buffers become new sink nodes (sink nodes
connected to the inserted buffers are no longer sinks to the
net source)

Combinational Merging (2)

• Algorithm
1. Sort the sinks in the increasing order of their required times (in

case of a tie, the decreasing order of the gate load)
2. For each buffer cell bj, compute the optimal number of sinks kbj

(from the tail of the sink list) to be connected to bj.
Lall : total gate loads in the sink list
nbj = (Tj Lall /Tr Lj)1/2 : optimal number of buffers in two-level tree using
cell bj

Lall / nbj : Optimal load per single buffer bj

L’k： total gate loads of the last k nodes in the sink list
kbj is the smallest k which satisfies L’k ≥ Lall / nbj

Combinational Merging (3)

3. For each cell type bj, let R(bj) be the required time at the source r
where only a single cell of bj is connected to r and cell bj is
connected to the last k (= kbj) nodes in the sink list.

R(bj) = R’k – Tbj Lk – Sbj – Tr Lbj

R’k ： required time of the k-th node from the bottom of the sink list
Choose the cell type bj which gives the largest R(bj)
(this will have the largest speed up effect)

4. Update sink list :
Insert the cell bj to the fan-out tree
Delete the kbj nodes from the sink list (since they are buffered by bj)
Add bj to the sink list

Required time at the inserted bj cell : R(bj) = R’k – Tbj Lk – Sbj

If kbj is less than the total number of nodes in the sink list, go to 1.
5. Retrieve the best allocation during the whole process (allocation

with the largest required time at the source). End of process.

Combinational Merging (4)

R L L’k
138 3 29
155 6 26
160 6 20
186 2 14
208 4 12
232 6 8
254 2 2

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (116 / 8)1/2

= 3.81
Lall / nb1 = 7.62
Kb1 = 2, L’2 = 8, R’2 = 232

b1 Lb1 = 2
Sb1 = 42
Tb1 = 4

b2 Lb2 = 3
Sb2 = 48
Tb2 = 2

R(b1) = R’2 – Tb1 * L’2 – Sb1 – Tr * Lb1
= 232 – 4 * 8 – 42 – 4 * 2
= 150

R(b2) = R’4 – Tb2 * L’4 – Sb2 – Tr * Lb2
= 186 – 2 * 14 – 48 – 4 * 3
= 98

Tr = 4

Lall = 29

Sr = 12 R0 = 138, L0 = 3
R1 = 155, L1 = 6
R2 = 160, L2 = 6

R4 = 208, L4 = 4
R3 = 186, L3 = 2

R6 = 254, L6 = 2
R5 = 232, L5 = 6

Rr = 10

Dr = 128

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (58 / 12)1/2

= 2.20
Lall / nb2 = 13.19
Kb2 = 4, L’4 = 14, R’4 = 186

b1
Tr = 4

R6 = 254, L6 = 2

R5 = 232, L5 = 6

b2
Tr = 4

R6 = 254, L6 = 2
R5 = 232, L5 = 6
R4 = 208, L4 = 4
R3 = 186, L3 = 2

Combinational Merging (5)

R L L’k
138 3 23
155 6 20
158 2 14
160 6 12
186 2 6
208 4 4

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (92 / 8)1/2

= 3.39
Lall / nb1 = 6.78
Kb1 = 3, L’3 = 12, R’3 = 160

b1 Lb1 = 2
Sb1 = 42
Tb1 = 4

b2 Lb2 = 3
Sb2 = 48
Tb2 = 2

R(b1) = R’3 – Tb1 * L’3 – Sb1 – Tr * Lb1
= 160 – 4 * 12 – 42 – 4 * 2
= 62

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 160 – 2 * 12 – 48 – 4 * 3
= 76

Tr = 4

Lall = 23

R0 = 138, L0 = 3
R1 = 155, L1 = 6

R2 = 160, L2 = 6

R4 = 208, L4 = 4
R3 = 186, L3 = 2

Sr = 12

Rr = 34

Dr = 104

Rb0 = 158, Lb0 = 2

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (46 / 12)1/2

= 1.96
Lall / nb2 = 11.75
Kb2 = 3, L’3 = 12, R’3 = 160

b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b2
Tr = 4

R4 = 208, L6 = 4
R3 = 186, L5 = 2
R2 = 172, L4 = 6

b1
Tr = 4

R4 = 208, L6 = 4
R3 = 186, L5 = 2
R2 = 172, L4 = 6

Combinational Merging (6)

R L L’k
100 3 14
138 3 11
155 6 8
158 2 2

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (56 / 8)1/2

= 2.65
Lall / nb1 = 5.29
Kb1 = 2, L’2 = 8, R’2 = 155

b1 Lb1 = 2
Sb1 = 42
Tb1 = 4

b2 Lb2 = 3
Sb2 = 48
Tb2 = 2

R(b1) = R’2 – Tb1 * L’2 – Sb1 – Tr * Lb1
= 155 – 4 * 8 – 42 – 4 * 2
= 73

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 138 – 2 * 11 – 48 – 4 * 3
= 56

Tr = 4

Lall = 14

Sr = 12

R0 = 138, L0 = 3
R1 = 155, L1 = 6

Rr = 32

Dr = 68
Rb0 = 158, Lb0 = 2

Rb1 = 88, Lb1 = 3

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (28 / 12)1/2

= 1.53
Lall / nb2 = 9.17
Kb2 = 3, L’3 = 11, R’3 = 138

b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1
Tr = 4

Rb0 = 158, Lb0 = 2

R1 = 155, L4 = 6

b2
Tr = 4

Rb0 = 158, Lb0 = 2
R1 = 155, L5 = 6
R0 = 132, L4 = 3

Combinational Merging (7)

R L L’k
81 2 8
88 3 6
138 3 3

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (32 / 8)1/2

= 2.00
Lall / nb1 = 4.00
Kb1 = 2, L’2 = 6, R’2 = 88

R(b1) = R’3 – Tb1 * L’3 – Sb1 – Tr * Lb1
= 88 – 4 * 6 – 42 – 4 * 2
= 14

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 81 – 2 * 8 – 48 – 4 * 3
= 5

Tr = 4

Lall = 8
R0 = 138, L0 = 3

Sr = 12

Rr = 37

Dr = 44
Rb1 = 88, Lb1 = 3

Rb2 = 81, Lb2 = 2 Rb0 = 158, Lb0 = 2

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (16 / 12)1/2

= 1.15
Lall / nb2 = 6.93
Kb2 = 3, L’3 = 8, R’3 = 81

b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R1 = 155, L1 = 6

b1
Tr = 4

R0 = 132, L0 = 3

Rb1 = 100, Lb1 = 3

b2
Tr = 4

R0 = 132, L0 = 3
Rb1 = 100, Lb1 = 3
Rb2 = 81, Lb2 = 2

Combinational Merging (8)

R L L’k
22 2 4
81 2 2

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (16 / 8)1/2

= 1.41
Lall / nb1 = 2.83
Kb1 = 2, L’2 = 4, R’2 = 22

R(b1) = R’2 – Tb1 * L’2 – Sb1 – Tr * Lb1
= 22 – 4 * 4 – 42 – 4 * 2
= – 44

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 22 – 2 * 4 – 48 – 4 * 3
= – 46

Tr = 4

Lall = 4

Sr = 12

Rr = – 6

Dr = 28

Rb3 = 22, Lb3 = 2
R0 = 138, L0 = 3

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (8 / 12)1/2

= 0.82
Lall / nb2 = 4.90
Kb2 = 2, L’2 = 4, R’2 = 22

Rb1 = 100, Lb1 = 3
b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

Rb2 = 81, Lb2 = 2 Rb0 = 158, Lb0 = 2
b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6

b1

b1
Tr = 4

Rb2 = 81, Lb2 = 2

Rb3 = 34, Lb3 = 2

b1
Tr = 4

Rb2 = 81, Lb2 = 2

Rb3 = 34, Lb3 = 2

Combinational Merging (9)

Tr = 4
Sr = 12

Rr = – 44

Dr = 20

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6

b1
b1

R=158

R=88
R=22

R=81

Tr = 4
Sr = 12

Rr = 37

Dr = 44

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6
R=158

R=88

R=81

Tr = 4
Sr = 12

Rr = 6

Dr = 28

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6

b1

R=158

R=88
R=22

R=81

Tr = 4
Sr = 12

Rr = 32

Dr = 68

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6
R1 = 155, L1 = 6

R=158

R=88

Tr = 4
Sr = 12

Rr = 34

Dr = 104

R0 = 138, L0 = 3
R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6
R1 = 155, L1 = 6

R=158

Tr = 4
Sr = 12

Rr = 10

Dr = 128

R0 = 138, L0 = 3
R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

R6 = 254, L6 = 2
R5 = 232, L5 = 6
R1 = 155, L1 = 6

Timing-Driven Technology Mapping (9)

Boolean Network
restructuring on
paths with timing
violations (negative
slack times)

Primary outputs
(output pins, register inputs)

Primary inputs
(input pins, register outputs)

If iterative technology mapping
cannot resolve timing violations
……

Boolean Network Restructuring

• There are some cases where delay-optimal technology mapping and
fan-out optimization cannot satisfy the specified timing constraints

need to change the circuit structure
• On the paths with timing violations, collapse a part of the path into a

large node (internally represented in sum-of-product form)．
• Apply timing decomposition to the collapsed node to reduce the critical

path delay.
cin

p0 g0

a0

cout

b0 a1 b1 a2 b2

p1 g1 p2 g2

p0 g0

a0

cin cout

b0 a1 b1 a2 b2

p1 g1 p2 g2

g2+p2 g1+p2 p1 g0+p2 p1 p0cin

cout

p0 g0

a0

cin

b0 a1 b1 a2 b2

p1 g1 p2 g2

collapsing

timing decomposition

p0 g0

a0

cin

cout

b0 a1 b1 a2 b2

g2p1 g1 p2

6

0 0 0 0 0 0

4

Timing Analysis on Boolean Network

For simplicity, all gate delays are
assumed to be 1 (output transition
coefficient is assumed as 0)

Arrival time calculation

1 1 1 1 1 1

5 6 7 8 9 10
p0 g0

a0

cin

cout

b0

Required time calculation

–1 –1

0 1 2 3 4 5

1 1 3 3

0 1 2 3 4 5

–4

Slack time calculation

–1 –1

1 2 3 4

1 1 3 3

–4 –4 –4 –4 –4 –4

–1 0

a1 b1 a2 b2

p1 g1 p2 g2 p0 g0

a0

cin

cout

b0 a1 b1 a2 b2

p1 g1 p2 g2

Node Collapsing

• Select several nodes on the path with the least slack time and
merge into one node.

p0 g0

a0

cin

cout

b0 a1 b1 a2 b2

p2 g2p1 g1

g2+ p2 g1 + p2 c
c

p0 g0

a0

cin cout

b0 a1 b1 a2 b2

p1 g1 p2 g2

g2+ p2 g1 + p2 p1 g0 + p2 p1 p0cin

Collapse a part of the critical path Collapse the entire critical path

p0 g0

a0

cin

cout

b0 a1 b1 a2 b2

g2p1 g1 p2

Timing Decomposition (1)

• Decompose the collapsed node into 2-input gates (AND, OR) so
that the signals with smaller slack times becomes closer to the
output.

cout

c

g1 p2 g2 g2

p2

g1

c

cout
coutp2

g1

g2+ p2 (g1 + c) g2+ p2 g1 + p2 c (g2+ p2 g1) + p2 c

collapsing timing decomposition

p0 g0

cin

cout

p1 g1 p2 g2

cin

cout

g2

c

g2

g1
2p

p1g0

p0

g2+ p2 g1 + p2 p1 g0 + p2 p1 p0cin

collapsing

–4

2 3 4

–4

2

3
4

–1 0 1 2 3 4

–4

timing
decomposition

Timing Decomposition (2)
• Bottom-up timing decomposition

– Timing divisor extraction : Among the algebraic divisors which leads to
circuit area reduction, extract the ones which is not on the critical path.

– AND-OR decomposition : Decompose the division remainder into 2-input
AND and OR gates. Put the signals on the critical path closer to the output.

Q = p2 p1

cout = g2+ p2 g1 + Q g0 + Q p0cin

cin

cout

p0

g2

g1
2p

p1g0

g2

g1

g0

p0

cin

cout

Q
p2

p1

cout = g2+ p2 g1 + p2 p1 g0 + p2 p1 p0cin

g2

g1

g0

p0

cin

cout

Q
p2

p1

Timing divisor
extraction

AND-OR decomposition

cout = ((g2+ p2 g1) + Q g0) + ((Q p0) cin)

Q = p2 p1

Technology Mapping

Summary on Timing-Driven Technology
Mapping and Boolean Network Restructuring

1. Each instance of delay-optimal technology mapping is dependent on
other mapping results and fan-out tree optimizations. Therefore,
several passes may be needed if timing violation occurs. Also,
Boolean Network restructuring may be needed if the timing violation
cannot be resolved in technology mapping phase (which will require
another run of technology mapping).

2. There can be a number of possible strategies on the scheduling of
each computation phase (technology mapping, fan-out optimization,
area recovery, timing decomposition on Boolean Network) which will
greatly affect the nature of the mapped circuits as well as the
computation time.

3. In recent VLSI process technology, wiring delays are becoming a
dominant factor in circuit speed compared to gate delays. Wiring
delays cannot be accurately estimated until the physical layout of the
circuit, and therefore very hard to anticipate during logic synthesis
and technology mapping.

	VLSI System Design�Part III : Technology Mapping (3)�Oct.2006 - Feb.2007�
	Timing-Driven Technology Mapping (1)
	Timing-Driven Technology Mapping (2)
	Timing-Driven Technology Mapping (3)
	Timing-Driven Technology Mapping (4)
	Timing-Driven Technology Mapping (5)
	Timing-Driven Technology Mapping (6)
	Timing-Driven Technology Mapping (7)
	Timing-Driven Technology Mapping (8)
	Buffer Cells for Fan-out Trees
	Fan-Out Optimization
	Balanced Fan-Out Tree (1)
	Balanced Fan-Out Tree (2)
	Balanced Fan-Out Tree (3)
	Two-Level Tree (1)
	Two-Level Tree (2)
	Two-Level Tree (3)
	Two-Level Tree (4)
	Two-Level Tree (5)
	Two-Level Tree (6)
	Two-Level Tree (7)
	Combinational Merging (1)
	Combinational Merging (2)
	Combinational Merging (3)
	Combinational Merging (4)
	Combinational Merging (5)
	Combinational Merging (6)
	Combinational Merging (7)
	Combinational Merging (8)
	Combinational Merging (9)
	Timing-Driven Technology Mapping (9)
	Boolean Network Restructuring
	Timing Analysis on Boolean Network
	Node Collapsing
	Timing Decomposition (1)
	Timing Decomposition (2)
	Summary on Timing-Driven Technology Mapping and Boolean Network Restructuring

