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Timing-Driven Technology Mapping (1)

1. Input :
– Circuit description : Boolean Network (DAG)
– Timing Constraints : Maximum arrival time from primary inputs to

primary outputs (often corresponding to maximum clock period)
2. Output :

– Technology-mapped gate-level netlist satisfying the specified 
timing constraints with minimum circuit area

3. Computation flow
– Partition the target DAG into trees, leaf-DAGs or cones (call this 

the circuit blocks)
– At each circuit block : delay-optimal tree covering
– At each connections between circuit blocks (multiple fan-out 

nets) : fan-out optimization
– Nodes on non-critical paths : area recovery
– Paths with timing violations : Boolean Network restructuring



Timing-Driven Technology Mapping (2)

Primary outputs
(output pins, register inputs)

Primary inputs
(input pins, register outputs)

Tree / leaf-DAG / cone

Delay-optimal 
tree covering
(assume 0 arrival time at 
each leaf inputs)



Timing-Driven Technology Mapping (3)

Calculate required 
times at leaf inputs 
on trees connecting 
to the primary outputs
(1st level trees)

Required time at primary output :
Maximum clock period



Timing-Driven Technology Mapping (4)

Fan-out tree (1st level)
Fan-out optimization 
at the leaf inputs of 
1st level trees
(maximize required 
times at the source of 
multiple fan-out nets)



Timing-Driven Technology Mapping (5)

Calculate required 
times at leaf inputs on 
trees connecting to 1st

level fan-out trees
(2nd level trees)



Timing-Driven Technology Mapping (6)

Fan-out tree (2nd level)
Fan-out optimization 
at the leaf inputs of 
2nd level trees

Continue towards the 
primary inputs until all 
multiple fan-out nets 
have been evaluated.



Timing-Driven Technology Mapping (7)

Compute arrival 
times and slack 
times at each node

Arrival time at primary inputs : 0



Timing-Driven Technology Mapping (8)

Area recovery on 
non-critical path 
nodes

In case of timing 
violations, do another 
pass of delay-optimal 
tree covering and fan-
out optimization on 
currently evaluated  
arrival time values

Primary outputs
(output pins, register inputs)

Primary inputs
(input pins, register outputs)



Buffer Cells for Fan-out Trees
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Fan-Out Optimization

• Fan-out optimization： Construct a fan-out tree which maximize the 
required time Rr at the net source r on following conditions

– Net source r :
• Output transition coefficient : Tr

(Switching delay Sr is not really needed in the optimization)
– Buffer cell bj :

• Gate load : Lbj
• Switching delay : Sbj
• Output transition coefficient : Tbj

– Sink i (i = 1, 2, … n)
• Gate load : Li
• Required time Ri

b1
Lb1 = 2
Sb1 = 42
Tb1 = 4

b2
Lb2 = 3
Sb2 = 48
Tb2 = 2

Tr = 4
Sr = 12 R0 = 132, L0 = 2

R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

Rr = 8

R0 = 132, L0 = 2

Rr = 22
R1 = 139, L1 = 4

R’0

R’1

R’2

D’r = 48

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

R6 = 164, L6 = 3
Dr = 124

Tr = 4
Sr = 12 b2

b2

b2

Lall = 28



Balanced Fan-Out Tree (1)
• Assumptions : 

– Required times at all sinks are identical. (Ex. clock signals)
– Fan-out tree is balanced with a height of M. 
– Use only one type of buffer cell b.

• Compute the optimal number of buffers at each level of the tree.
(nk : number of buffers at kth level, nk > 0) 
– The nk buffers at kth level can be modeled as a single buffer with 

the gate load nk Lb, switching delay Sk and output transition Tb /nk

source r

sink s0

sink si

sink sN – 1

1st level
2nd level M th level

n1
n2 nM

Lb
Sb
Tb

Σ sisource r

b × n1 b × n2 b × nM

n1 Lb
Sb
Tb / n1

n2 Lb
Sb
Tb / n2

nM Lb
Sb
Tb / nM



Balanced Fan-Out Tree (2)

Delay from source to each sink (Lall : sum of all sink loads): 
DM = Tr (n1Lb) +Sb+ (Tb/n1)(n2Lb) +Sb+ (Tb/n2)(n3Lb) + … + (Tb / nM) Lall

= Tr (n1Lb) + (Tb/n1)(n2Lb) + (Tb/n2)(n3Lb) + … + (Tb / nM) Lall +M⋅ Sb

Partial derivative on DM with respect to each nk :
∂ DM / ∂ n1 = Tr Lb – TbLb n2 / n1

2 = 0 ⇒ n1
2 = n2Tb / Tr

∂ DM / ∂ n2 = TbLb / n1 – TbLb n3 / n2
2 = 0 ⇒ n2

2 = n1n3 ⇒ n2/n1 = n3/n2 

∂ DM / ∂ n3 = TbLb / n2 – TbLb n4 / n3
2 = 0 ⇒ n3

2 = n2n4 ⇒ n3/n2 = n4/n3 

:                       :                             :                          :
∂ DM / ∂ nM = TbLb / nM–1 – TbLall / nM

2 = 0 ⇒ nM
2 = nM–1Lall / Lb 

Σ sisource r

b × nM

n1 Lb
Sb
Tb / n1

n2 Lb
Sb
Tb / n2

nM Lb
Sb
Tb / nM

b × n1 b × n2 b × n3

n3 Lb
Sb
Tb / n3



Balanced Fan-Out Tree (3)

The number of buffers at k-th level nk when DM is minimum:
n1

2 = n2Tb / Tr

n2/n1 = n3/n2 = n4/n3  =… nM /nM – 1 = r
nM

2 = nM–1Lall / Lb 

→ n1 = r (Tb / Tr ) , nM = (1 / r) (Lall / Lb ) ∴ n1 nM = (Tb / Tr ) (Lall / Lb )
n1 = n2 / r = n3 / r 2 = … = nM / r M – 1 ∴ nM = n1r M – 1 

→ n1 nM = n1
2 r M – 1 = (Tb / Tr )2 r M + 1 = (Tb / Tr ) (Lall / Lb )

→ r M+1 = (Tr / Tb ) (Lall / Lb )

→ r = (Tr Lall / Tb Lb) 1 / (M + 1)

→ nk = (Tb / Tr ) (Tr Lall / Tb Lb) k / (M + 1)



Two-Level Tree (1)
• Two-level tree：Restrict the tree height to be 1 (M = 1)

Delay from source to each sink : 
D = Tr (n1Lb)+Sb+(Tb / n1)Lall

n1 when D is minimized : n1 = (Tb Lall /Tr Lb)1/2

Use only one type of buffer
Even with this restricted tree structure, this optimization problem is NP-
complete.

• Two-level tree algorithm :
1. Sort the sinks in the increasing order of their required times (in case of a tie, 

the decreasing order of the gate load)
2. Set n1 = ⎡(Tb Lall /Tr Lb)1/2⎤.
3. Allocate each sink (in the sorted order) to one of the n1 buffers

Choose the allocation which maximizes the required time at the source node. 
4. Compute the two-level tree for each buffer cell type, and choose the fastest. 
5. This is a greedy algorithm which do not guarantee optimality, but is a 

baseline algorithm for other more sophisticated methods. 



Two-Level Tree (2)
Lb = 3
Sb = 48
Tb = 2

Tr = 4

Lall = 28
Optimal number of buffer cells :
n1 = ⎡(Tb Lall /Tr Lb)1/2⎤

= ⎡(56 / 12)1/2⎤
= ⎡2.16⎤ = 3

R0 = 132, L0 = 2

Required time :
Rr = R0 – Dr

= 132 – 124 = 8

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

Sr = 12

Rr = 32

Rr = MIN { R’0 , R’1, R’2 } – D’r
= 80 – 48 = 32

Delay (buffered):
D’r = Tr * Lb * n1 + Sr

= 4 * 3 * 3 + 12 = 48

Delay :
Dr = Tr * Lall + Sr

= 4 * 28 + 12 = 124

R’0 = Rmin0 – Tb * L’0 – Sb
= 132 – 2 * 2 – 48 = 80 

R’0

Rr = 8

R’1 = R’2 = ∞

R’1

R’2
D’r = 48 buf Rmini L’i R’i

0 132 2

0

0

80

1 ∞ ∞

2 ∞ ∞

Rmini : earliest required time 
among the child nodes of buffer i
L’i : total load connected at buffer i 
R’i : required time at buffer i

R’i = Rmini – Tb * L’i - Sb

MIN { R’0 , R’1, R’2 } = 80

Dr = 124



Two-Level Tree (3)

Lb = 3
Sb = 48
Tb = 2

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

buf Rmini L’i R’i
0 132 6

0

0

72

1 ∞ ∞

2 ∞ ∞

R0 = 132, L0 = 2

Rr = 24
R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

R0 = 132, L0 = 2

Rr = 32

R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

MIN { R’0 , R’1, R’2 } = 80

R’i = Rmini – Tb * L’i - Sb

MIN { R’0 , R’1, R’2 } = 72

This is a better allocation

buf Rmini L’i R’i
0 132 2

4

0

80

1 139 83

2 ∞ ∞



Two-Level Tree (4)

Lb = 3
Sb = 48
Tb = 2

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

R0 = 132, L0 = 2

Rr = 32

R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

buf Rmini L’i R’i
0 132 2

4

6

80

1 139 83

2 142 82

MIN { R’0 , R’1, R’2 } = 80

R2 = 142, L2 = 6

R0 = 132, L0 = 2

Rr = 29
R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

MIN { R’0 , R’1, R’2 } = 77

R2 = 142, L2 = 6

R3 = 146, L3 = 3

buf Rmini L’i R’i
0 132 2

7

6

80

1 139 77

2 142 82



Two-Level Tree (5)

Lb = 3
Sb = 48
Tb = 2

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

R0 = 132, L0 = 2

Rr = 22
R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

buf Rmini L’i R’i
0 132 2

7

12

80

1 139 77

2 142 70

MIN { R’0 , R’1, R’2 } = 70

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R0 = 132, L0 = 2

Rr = 22
R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

MIN { R’0 , R’1, R’2 } = 70

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

buf Rmini L’i R’i
0 132 6

7

12

72

1 139 77

2 142 70



Two-Level Tree (6)

Lb = 3
Sb = 48
Tb = 2

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

R0 = 132, L0 = 2

Rr = 22
R1 = 139, L1 = 4

R’0

R’1

R’2

D’r = 48

buf Rmini L’i R’i
0 132 6

10

12

72

1 139 71

2 142 70

MIN { R’0 , R’1, R’2 } = 70

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

R6 = 164, L6 = 3 IS THIS OPTIMAL???



Two-Level Tree (7)

R0 = 132, L0 = 2

Rr = 23
R1 = 139, L1 = 4

R’0

R’1

R’2

D’r = 48

buf Rmini L’i R’i
0 132 6

10

12

72

1 139 71

2 146 74
MIN { R’0 , R’1, R’2 } = 71

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

R6 = 164, L6 = 3

R0 = 132, L0 = 2

Rr = 24
R1 = 139, L1 = 4

R’0

R’1

R’2

D’r = 48

MIN { R’0 , R’1, R’2 } = 72

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

R6 = 164, L6 = 3

ACTUALLY, there are better solutions….

buf Rmini L’i R’i
0 132 6

10

12

72

1 142 74

2 146 74



Combinational Merging (1)

• Construction of general tree using multiple types of 
buffer cells

• Basic idea : 
Incrementally insert buffer cells and connect the k sink nodes 
with the largest required times. (This expects that the effect of 
load reduction due to buffer insertion is larger than the penalty 
of added delays for these least critical sink nodes)
k is determined by the two-level tree equation (instead of 
determining the optimal number of buffer cells, compute the 
optimal amount of loads the buffer should drive). 
Inserted buffers become new sink nodes (sink nodes 
connected to the inserted buffers are no longer sinks to the 
net source)



Combinational Merging (2)

• Algorithm
1. Sort the sinks in the increasing order of their required times (in 

case of a tie, the decreasing order of the gate load)
2. For each buffer cell bj, compute the optimal number of sinks kbj

(from the tail of the sink list) to be connected to bj. 
Lall : total gate loads in the sink list
nbj = (Tj Lall /Tr Lj)1/2 : optimal number of buffers in two-level tree using 
cell bj

Lall / nbj : Optimal load per single buffer bj

L’k： total gate loads of the last k nodes in the sink list
kbj is the smallest k which satisfies L’k ≥ Lall / nbj



Combinational Merging (3)

3. For each cell type bj, let R(bj) be the required time at the source r
where only a single cell of bj is connected to r and cell bj is 
connected to the last k (= kbj ) nodes in the sink list.

R(bj) = R’k – Tbj Lk – Sbj – Tr Lbj

R’k ： required time of the k-th node from the bottom of the sink list
Choose the cell type bj which gives the largest R(bj)
(this will have the largest speed up effect)

4. Update sink list : 
Insert the cell bj to the fan-out tree
Delete the kbj nodes from the sink list (since they are buffered by bj)
Add bj to the sink list 

Required time at the inserted bj cell : R(bj) = R’k – Tbj Lk – Sbj

If kbj is less than the total number of nodes in the sink list, go to 1.
5. Retrieve the best allocation during the whole process (allocation 

with the largest required time at the source). End of process.



Combinational Merging (4)

R L L’k
138 3 29
155 6 26
160 6 20
186 2 14
208 4 12
232 6 8
254 2 2

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (116 / 8)1/2

= 3.81
Lall / nb1 = 7.62
Kb1 = 2, L’2 = 8, R’2 = 232

b1 Lb1 = 2
Sb1 = 42
Tb1 = 4

b2 Lb2 = 3
Sb2 = 48
Tb2 = 2

R(b1) = R’2 – Tb1 * L’2 – Sb1 – Tr * Lb1
= 232 – 4 * 8 – 42 – 4 * 2
= 150

R(b2) = R’4 – Tb2 * L’4 – Sb2 – Tr * Lb2
= 186 – 2 * 14 – 48 – 4 * 3
= 98

Tr = 4

Lall = 29

Sr = 12 R0 = 138, L0 = 3
R1 = 155, L1 = 6
R2 = 160, L2 = 6

R4 = 208, L4 = 4
R3 = 186, L3 = 2

R6 = 254, L6 = 2
R5 = 232, L5 = 6

Rr = 10

Dr = 128

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (58 / 12)1/2

= 2.20
Lall / nb2 = 13.19
Kb2 = 4, L’4 = 14, R’4 = 186

b1
Tr = 4

R6 = 254, L6 = 2

R5 = 232, L5 = 6

b2
Tr = 4

R6 = 254, L6 = 2
R5 = 232, L5 = 6
R4 = 208, L4 = 4
R3 = 186, L3 = 2



Combinational Merging (5)

R L L’k
138 3 23
155 6 20
158 2 14
160 6 12
186 2 6
208 4 4

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (92 / 8)1/2

= 3.39
Lall / nb1 = 6.78
Kb1 = 3, L’3 = 12, R’3 = 160

b1 Lb1 = 2
Sb1 = 42
Tb1 = 4

b2 Lb2 = 3
Sb2 = 48
Tb2 = 2

R(b1) = R’3 – Tb1 * L’3 – Sb1 – Tr * Lb1
= 160 – 4 * 12 – 42 – 4 * 2
= 62

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 160 – 2 * 12 – 48 – 4 * 3
= 76

Tr = 4

Lall = 23

R0 = 138, L0 = 3
R1 = 155, L1 = 6

R2 = 160, L2 = 6

R4 = 208, L4 = 4
R3 = 186, L3 = 2

Sr = 12

Rr = 34

Dr = 104

Rb0 = 158, Lb0 = 2

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (46 / 12)1/2

= 1.96
Lall / nb2 = 11.75
Kb2 = 3, L’3 = 12, R’3 = 160

b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b2
Tr = 4

R4 = 208, L6 = 4
R3 = 186, L5 = 2
R2 = 172, L4 = 6

b1
Tr = 4

R4 = 208, L6 = 4
R3 = 186, L5 = 2
R2 = 172, L4 = 6



Combinational Merging (6)

R L L’k
100 3 14
138 3 11
155 6 8
158 2 2

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (56 / 8)1/2

= 2.65
Lall / nb1 = 5.29
Kb1 = 2, L’2 = 8, R’2 = 155

b1 Lb1 = 2
Sb1 = 42
Tb1 = 4

b2 Lb2 = 3
Sb2 = 48
Tb2 = 2

R(b1) = R’2 – Tb1 * L’2 – Sb1 – Tr * Lb1
= 155 – 4 * 8 – 42 – 4 * 2
= 73

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 138 – 2 * 11 – 48 – 4 * 3
= 56

Tr = 4

Lall = 14

Sr = 12

R0 = 138, L0 = 3
R1 = 155, L1 = 6

Rr = 32

Dr = 68
Rb0 = 158, Lb0 = 2

Rb1 = 88, Lb1 = 3

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (28 / 12)1/2

= 1.53
Lall / nb2 = 9.17
Kb2 = 3, L’3 = 11, R’3 = 138

b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1
Tr = 4

Rb0 = 158, Lb0 = 2

R1 = 155, L4 = 6

b2
Tr = 4

Rb0 = 158, Lb0 = 2
R1 = 155, L5 = 6
R0 = 132, L4 = 3



Combinational Merging (7)

R L L’k
81 2 8
88 3 6
138 3 3

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (32 / 8)1/2

= 2.00
Lall / nb1 = 4.00
Kb1 = 2, L’2 = 6, R’2 = 88

R(b1) = R’3 – Tb1 * L’3 – Sb1 – Tr * Lb1
= 88 – 4 * 6 – 42 – 4 * 2
= 14

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 81 – 2 * 8 – 48 – 4 * 3
= 5

Tr = 4

Lall = 8
R0 = 138, L0 = 3

Sr = 12

Rr = 37

Dr = 44
Rb1 = 88, Lb1 = 3

Rb2 = 81, Lb2 = 2 Rb0 = 158, Lb0 = 2

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (16 / 12)1/2

= 1.15
Lall / nb2 = 6.93
Kb2 = 3, L’3 = 8, R’3 = 81

b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R1 = 155, L1 = 6

b1
Tr = 4

R0 = 132, L0 = 3

Rb1 = 100, Lb1 = 3

b2
Tr = 4

R0 = 132, L0 = 3
Rb1 = 100, Lb1 = 3
Rb2 = 81, Lb2 = 2



Combinational Merging (8)

R L L’k
22 2 4
81 2 2

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (16 / 8)1/2

= 1.41
Lall / nb1 = 2.83
Kb1 = 2, L’2 = 4, R’2 = 22

R(b1) = R’2 – Tb1 * L’2 – Sb1 – Tr * Lb1
= 22 – 4 * 4 – 42 – 4 * 2
= – 44 

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 22 – 2 * 4 – 48 – 4 * 3
= – 46 

Tr = 4

Lall = 4

Sr = 12

Rr = – 6

Dr = 28

Rb3 = 22, Lb3 = 2
R0 = 138, L0 = 3

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (8 / 12)1/2

= 0.82
Lall / nb2 = 4.90
Kb2 = 2, L’2 = 4, R’2 = 22

Rb1 = 100, Lb1 = 3
b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

Rb2 = 81, Lb2 = 2 Rb0 = 158, Lb0 = 2
b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6

b1

b1
Tr = 4

Rb2 = 81, Lb2 = 2

Rb3 = 34, Lb3 = 2

b1
Tr = 4

Rb2 = 81, Lb2 = 2

Rb3 = 34, Lb3 = 2



Combinational Merging (9)

Tr = 4
Sr = 12

Rr = – 44 

Dr = 20

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6

b1
b1

R=158

R=88
R=22

R=81

Tr = 4
Sr = 12

Rr = 37 

Dr = 44

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6
R=158

R=88

R=81

Tr = 4
Sr = 12

Rr = 6 

Dr = 28

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6

b1

R=158

R=88
R=22

R=81

Tr = 4
Sr = 12

Rr = 32 

Dr = 68

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6
R1 = 155, L1 = 6

R=158

R=88

Tr = 4
Sr = 12

Rr = 34 

Dr = 104

R0 = 138, L0 = 3
R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6
R1 = 155, L1 = 6

R=158

Tr = 4
Sr = 12

Rr = 10 

Dr = 128

R0 = 138, L0 = 3
R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

R6 = 254, L6 = 2
R5 = 232, L5 = 6
R1 = 155, L1 = 6



Timing-Driven Technology Mapping (9)

Boolean Network 
restructuring on 
paths with timing 
violations (negative 
slack times)

Primary outputs
(output pins, register inputs)

Primary inputs
(input pins, register outputs)

If iterative technology mapping 
cannot resolve timing violations 
……



Boolean Network Restructuring

• There are some cases where delay-optimal technology mapping and 
fan-out optimization cannot satisfy the specified timing constraints

need to change the circuit structure
• On the paths with timing violations, collapse a part of the path into a 

large node (internally represented in sum-of-product form)．
• Apply timing decomposition to the collapsed node to reduce the critical 

path delay.
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p0 g0
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b0 a1 b1 a2 b2

p1 g1 p2 g2

p0 g0
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cin cout

b0 a1 b1 a2 b2

p1 g1 p2 g2

g2+p2 g1+p2 p1 g0+p2 p1 p0cin

cout
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cin
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collapsing

timing decomposition



p0 g0

a0

cin

cout

b0 a1 b1 a2 b2

g2p1 g1 p2

6

0 0 0 0 0 0

4

Timing Analysis on Boolean Network

For simplicity, all gate delays are 
assumed to be 1 (output transition 
coefficient is assumed as 0)

Arrival time calculation

1 1 1 1 1 1

5 6 7 8 9 10
p0 g0
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Slack time calculation
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Node Collapsing

• Select several nodes on the path with the least slack time and 
merge into one node. 

p0 g0

a0

cin

cout

b0 a1 b1 a2 b2

p2 g2p1 g1

g2+ p2 g1 + p2 c
c

p0 g0
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cin cout
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Collapse a part of the critical path Collapse the entire critical path
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cout
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Timing Decomposition (1)

• Decompose the collapsed node into 2-input gates (AND, OR) so 
that the signals with smaller slack times becomes closer to the 
output. 

cout

c

g1 p2 g2 g2

p2

g1

c

cout
coutp2
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collapsing timing decomposition
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collapsing
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timing
decomposition



Timing Decomposition (2)
• Bottom-up timing decomposition

– Timing divisor extraction : Among the algebraic divisors which leads to 
circuit area reduction, extract the ones which is not on the critical path. 

– AND-OR decomposition : Decompose the division remainder into 2-input 
AND and OR gates. Put the signals on the critical path closer to the output. 

Q = p2 p1

cout = g2+ p2 g1 + Q g0 + Q p0cin

cin

cout

p0

g2

g1
2p

p1g0

g2

g1
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cin

cout

Q
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cout = g2+ p2 g1 + p2 p1 g0 + p2 p1 p0cin
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g0
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cin

cout

Q
p2

p1

Timing divisor
extraction

AND-OR decomposition

cout = ((g2+ p2 g1) + Q g0) + ((Q p0) cin)

Q = p2 p1

Technology Mapping



Summary on Timing-Driven Technology 
Mapping and Boolean Network Restructuring

1. Each instance of delay-optimal technology mapping is dependent on 
other mapping results and fan-out tree optimizations. Therefore, 
several passes may be needed if timing violation occurs. Also, 
Boolean Network restructuring may be needed if the timing violation 
cannot be resolved in technology mapping phase (which will require 
another run of technology mapping).

2. There can be a number of possible strategies on the scheduling of 
each computation phase (technology mapping, fan-out optimization, 
area recovery, timing decomposition on Boolean Network) which will 
greatly affect the nature of the mapped circuits as well as the 
computation time.

3. In recent VLSI process technology, wiring delays are becoming a 
dominant factor in circuit speed compared to gate delays. Wiring
delays cannot be accurately estimated until the physical layout of the 
circuit, and therefore very hard to anticipate during logic synthesis 
and technology mapping. 
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