
VLSI System Design
Part V : High-Level Synthesis(2)

Oct.2006 - Feb.2007

Lecturer : Tsuyoshi Isshiki
Dept. Communications and Integrated Systems,

Tokyo Institute of Technology

isshiki@vlsi.ss.titech.ac.jp
http://www.vlsi.ss.titech.ac.jp/~isshiki/VLSISystemDesign/top.html

High-Level Synthesis Flow
A) Design capture (HDLs, C/C++, signal-flow graph,

etc)
B) Compilation to internal representation

• Data-flow graph (DFG)
• Control-flow graph (CFG)
• Control-data-flow graph (CDFG)

C) Resource allocation
• Specify available functional units

D) Operation scheduling
• Assign each operation to control steps

E) Resource binding
• Assign each data to registers
• Assign each operation to functional units

Synthesis Constraints and
Cost Functions

• Constraints : must be satisfied
• Cost function : want to minimize

Time-constrained minimize area
Area-constrained minimize latency (maximize
throughput)
How to evaluate area before logic synthesis?

simple approximation : only count the number of
functional units (ignore control units, registers and
memories)

• Other parameters : power consumption,
testability

Module Library
Specify the types of functional units

M = { m | m : functional units}
single function units : add, subtract, multiply, compare, shift
multi-function units : add/subtract, add/subtract/compare (ALU)

• Speed/area choices : slow & small ↔ fast & large
• Clocking choices : single-cycle, multi-cycle, pipelined
Characterization of functional units

p(m) : # of pipeline stages
dp(m) : Maximum combinational logic delay per pipeline stage
d(m) = p(m) × dp(m) : computation latency
a(m) : area

module delay per stage # pipe stages area

20ns 1

1

1

2

m1 : ADD-II 10ns

200

300

2600m2 : MULT-I 80ns

3000m3 : MULT-II 40ns

m0 : ADD-I

Resource Assignment and
Allocation

A) Resource assignment : for each operation v ∈ V in the
target data-flow graph G(V, E), allocate a compatible
functional unit m ∈ M :

ρ : V M or ρ(v) = m
Mapping ρ : V M determines the latency of each operation
v ∈ V : d(v) = d(ρ(v))

B) Resource allocation : specify the number of units r(m) for
each type m ∈ M to be used in the hardware
implementation

R = { r(m) | m ∈ M }
Typically specified by the designer as a part of the synthesis
parameters
Determines the circuit area occupied by the functional units :
Area(R) = Σ r(m) a(m)

m ∈ M

Resource Assignment Example

• Additions can be mapped either to m0 or m1
• Constant multipliers can be mapped either to m2 or

m3
• What is the best mapping ρ : V M when there are

multiple module candidates? (usually not trivial
problem)

• Popular approach is to allow only 1 type of
functional units for all operations with the same type

II I

O

m0 m0

m0

m0

m2 m2 m2 m2

module delay per stage # pipe stages area

20ns 1

1

1

2

m1 : ADD-II 10ns

200

300

2600m2 : MULT-I 80ns

3000m3 : MULT-II 40ns

m0 : ADD-I

Operation Scheduling (1)
Problem inputs

Data-flow graph G(V, E)
Module library M
Resource assignment ρ : V M
Resource allocation R = { r(m) | m ∈ M }
Clock cycle period P

Computation latency is quantized to # of clock cycles :
δp(m) = ⎡dp(m) / P⎤ : sampling interval

δ(m) = δp(m) × p(m) : latency
(dp(m) : delay per stage, p(m) : # of pipeline stages)

δp(v) = δp(ρ(v))
δ(v) = δ(ρ(v))

Operation Scheduling (2)
Scheduling time set T = {0, 1, ..., Tmax – 1}

Each scheduling time (control step) represents a duration
of P
Scheduling of each operation is specified by the clock
cycle index (between 0 and Tmax – 1)

Scheduling σ is a mapping of operations v ∈ V to
scheduling time set T

σ : V T
 while satisfying the data dependencies :

 σ(vj) ≥ σ(vi) + δ(vi) for ∀ eij = (vi, vj) ∈ E
• σ(vj) : execution starting cycle of node vj

• σ(vi) + δ(vi) : execution terminating cycle of node vi

ASAP (As-Soon-As-Possible)
Scheduling

A) Add “source node” vSRC to G(V, E)
• δ(vSRC) = 0
• σ(vSRC) = 0

B) Add arcs (vSRC, vIN) to G(V, E) for each input node vIN

C) Let δ(vIN) = 1 (actually, delay of input nodes depends
on the type of device connecting to vIN)

D) Solve the longest path problem on G(V, E) from vSRC

σ(vj) = max{σ(vi) + δ(vi) | (vi, vj) ∈ E}
σ(vj) – σ(vSRC) is the longest path length from vSRC
(basically the same as computing the arrival time as in
delay-optimal technology mapping)

Example (clock cycle periods P = 40ns)
• Resource assignment :

map all additions to ADD-I (delay = 20ns, δ = 1)
map all multiplications to MULT-I (delay = 80ns, δ = 2)

II I

O

0 0 0

1 1 1 1

3 3

4

5

7

8

v0 v1 v2

v3 v4 v5 v6

v7 v8

v9

v10

v11

v12

vSRC

ALAP (As-Late-As-Possible)
Scheduling

A) Add “sink node” vSINK to G(V, E)
• δ(vSINK) = 0
• σ(vSINK) = Tmax

B) Add arcs (vOUT, vSINK) to G(V, E) for each output node
vOUT

C) Let δ(vOUT) = 1 (actually, delay of output nodes
depends on the type of device connecting to vOUT)

D) Solve the longest path problem on G(V, E) to vSINK

σ(vj) = min{σ(vi) – δ(vj) | (vj, vi) ∈ E}
σ(vSINK) – σ(vj) is the longest path length to vSINK
(basically the same as computing the required time as in
delay-optimal technology mapping)

Example (same resource assignment and clock
period as ASAP example)
• Tmax = 9
(Tmax needs to be set so that σ(v) ≥ 0 for all v ∈ V)

I

I I

O

0

3

0

1 1

4 4

3

6

4

5

7

8

v0

v1

v2

v3 v4

v5 v6

v7

v8

v9

v10

v11

v12

vSINK

Resource Occupancy
• r(σ, m, t) : number of functional

units m being used simultaneously
at cycle t with scheduling σ

• r(σ, m) = max{r(σ, m, t) | t ∈ T} :
number of functional units m
required to implement scheduling σ

• If resource allocation R = { r(m) | m
∈ M } is specified, resource
occupancy needs to satisfy

r(σ, m) ≤ r(m) for all m ∈ M
• ASAP and ALAP schedulings do

not have the ability to optimize the
resource occupancy

• ASAP and ALAP scheduling
minimize the scheduling latency

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9 v10
v11 v12

v0

v1v2

v3

v4

v5

v6

v7

v8

v9 v10
v11 v12

ADD-I
MULT-I

0 0 0 2 1 0 0 1 0
0 4 4 0 0 1 1 0 0

ADD-I
MULT-I

0 0 0 1 1 0 1 1
0 2 2 0 2 3 1 0

ASAP

ALAP

0
0

Correct this!

Operation Scheduling (3)
Time-constrained scheduling

• Tmax (scheduling time set) specified
• Minimize resource occupancy r(σ, m) for each

m ∈ M
Force-directed scheduling

Resource-constrained scheduling
• R = { r(m) | m ∈ M } (resource allocation)

specified
• Minimize Tmax

List scheduling

Mobility and Partial Scheduling
• Partial scheduling σ’ is a mapping of

operations v ∈ V to a scheduling
range σ’(v) = [σ’min(v), σ’max(v)]

σ’ : V [T, T]
• σ’min : earliest possible scheduling

(ex. ASAP)
• σ’max : latest possible scheduling (ex.

ALAP)
• Mobility : μ(v) = σ’min(v) – σ’max(v)
• When the mobilities of all operations

v ∈ V are 0, then the partial
scheduling is complete.

v0

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v1

ASAP
ALAP

Force-Directed Scheduling (1)
A) Operation scheduling distribution :

assume that each operation v has the
equal probability of being scheduled
within the scheduling range σ’ (v)

θ (σ’,v, t) = Σ φ (σ’, v, t – k) / (μ(v) + 1)
where
φ (σ’, v, t – k) = 1 (t – k ∈ σ’ (v))

= 0 (otherwise)
• Total area of the distribution is equal to

the sampling interval:

Σ θ (σ’, v, t) = δp(v)

k = 0

δp(v) – 1

v4

v5

v7

v8

1.0

0.25

1.0

0.25 0.5

μ = 0

μ = 3

μ = 0

μ = 3

t ∈ T

0.5
δp = 1, δ = 2

μ = 1pipelined

Force-Directed Scheduling (2)
B) Resource occupation distribution

r (σ’,m, t) = Σ θ (σ’,v, t)
Σ r (σ’,m, t) = Σ δp(v)

v7

v8

v9 v11

v8

v11

1.251.25 0.25 0.25 1.0 0.00.00.00.0

ADD-I

ρ (v) = m

v3

v4

v5

v6

v10

v3

v4
v5
v6

v10

1.0 1.0 1.5 1.0 0.0 0.03.02.50.0

MULT-I

t ∈ T v ∈ V

v7 v9

Force-Directed Scheduling (3)
• Basic idea :

Minimize the maximum resource occupancy:
minimize max{r (σ’, m, t) | t ∈ T}

Make the distribution as flat as possible (most balanced)
Minimize “energy” : E(σ’, m) = Σ r (σ’, m, t)2

v3

v4

0.02.00.0 0.0

v5

v6 v10

2.0 1.0 2.0 1.0 1.0 1.0

t ∈ T

same
area

E = 20.5v3

v4
v5
v6

v10

E = 16.00

1.0 1.0 1.5 1.0 0.0 0.03.02.50.0

Force-Directed Scheduling (4)
C) Operation distribution energy (force) :

F(σ’, v) = Σ θ (σ’,v, t) × r (σ’, m, t)

E(σ’, m) = Σ F(σ’, v)

D) Operation scheduling energy (force) :
(fix the scheduling σ (v) t)

F(σ’, v, t) = Σ φ (v, t’– t) × r (σ’, m, t’)
where
φ (v, k) = 1 (0 ≤ k < δ (v))

= 0 (otherwise)
E) Operation scheduling cost :

C(σ’, v, t) = F(σ’, v, t) – F(σ’, v)
F) Minimum operation scheduling cost :

C(σ’, v) = min{C(σ’, v, t) | t ∈ T}

v5

1

0.5 0.5 0.250.25

t ∈ T

0.5

1

0.625 1.5 0.5 0.5 0.375

3.02.5

= 3.5

= 5.5

1 1

1 1

1.03.0

1.0 1.0

1 1
1.0 1.5

= 4.0

= 2.0

= 2.5

C(σ’, v5)
= 2.0 – 3.5
= – 1.5

t’ ∈ T

v ∈ V

1.0 1.0 1.5 1.0 0.0 0.03.02.50.0

Correct this!

Force-Directed Scheduling (5)
G) Optimal scheduling refinement

(σ (v5) 3 or σ (v6) 3)

MULT-I v3 v4 v5 v6 v10

F(σ’, v) 5.5 5.5 3.5 3.5 2.5
C(σ’, v) - - -1.5 -1.5 -

topt - - 3 3 -

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

v8

v11

1.251.25 0.25 0.25 1.0 0.00.00.00.0

ADD-I v7 v8 v9 v11

F(σ’, v) 1.25 0.75 1.25 1.0
C(σ’, v) - -0.5 - -

topt - 5, 6 - -

ADD-I

v7 v9

v3

v4
v5
v6

v10

1.0 1.0 1.5 1.0 0.0 0.03.02.50.0

MULT-I

E = 20.5

E = 4.25

Force-Directed Scheduling (6)

II I

O

[0] v0 v1 v2

v3 v4 v5 v6

v7 v8

v9

v10

v11

v12

[0,3] [0]

[1] [1] [3] [1,4]

[3] [5,6]

[4]

[5]

[7]

[8]

H) Update operation mobilities
(σ (v5) 3)

refining the
scheduling to an
operation affects
mobilities of
other operations

v0

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v1

0 1 2 3 4 5 6 7 8

Force-Directed Scheduling (7)
G) Optimal scheduling refinement

(σ (v6) 4)

MULT-I v3 v4 v5 v6 v10

F(σ’, v) 4.75 4.75 3.0 3.625 2.25
C(σ’, v) - - - -0.875 -

topt - - - 4 -

ADD-I v7 v8 v9 v11

F(σ’, v) 1.0 0.5 1.0 1.0
C(σ’, v) - 0 - -

topt - 5, 6 - -

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

v8
v11

1.0 1.0 0.5 0.5 1.0 0.00.00.00.0

ADD-I

v7 v9

v3

v4 v5
v6

v10

1.5 1.5 1.25 1.0 0.0 0.02.52.250.0

MULT-I

E = 18.375

E = 3.5

Force-Directed Scheduling (8)
G) Optimal scheduling refinement

(σ (v6) 4)

MULT-I v3 v4 v5 v6 v10

F(σ’, v) 4.0 4.0 3.0 4.0 3.0
C(σ’, v) - - - - -

topt - - - - -

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

v8 v11

1.0 1.0 0.0 1.0 1.0 0.00.00.00.0

ADD-I

ADD-I v7 v8 v9 v11

F(σ’, v) 1.0 1.0 1.0 1.0
C(σ’, v) - - - -

topt - - - -

v7 v9

v3

v4 v5

v6

v10

1.0 2.0 2.0 1.0 0.0 0.02.02.00.0

MULT-I

E = 16.0

E = 4.0

Force-Directed Scheduling (9)
Algorithm summary

1. Compute ASAP and ALAP
scheduling

2. Choose optimal scheduling
refinement

Operation scheduling distribution
Resource occupation distribution
Operation scheduling cost

3. Update operation mobilities
4. If there are unscheduled

operations, go to 2. Otherwise,
END.

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9 v10
v11 v12

0 0 1 1 1 0 1 0
2 2 2 2 1 1 0 0

ADD-I
MULT-I

0
0

Final scheduling

Improvements in
Force-Directed Scheduling

• Refining the scheduling for the target operation can affect the
mobilities of other operations

Consider the indirect forces : forces of predecessors (connecting to
input ports) and successors (connecting to output ports) of the target
operation
BUT actually, this is not enough (mobility changes can occur beyond
predecessors or successors)

• Operation scheduling energy equation

F(σ’, v, t) = Σ φ (v, t’– t) × r (σ’, m, t’)
does not consider the changes of resource occupation distribution
by the tentative scheduling refinement of σ(v) t

Lookahead cost evaluation :
F(σ’, v, t) = Σ φ (v, t’– t) × (r (σ’, m, t’) – θ (σ’, v, t) + φ (v, t’– t))

t’ ∈ T

operation
distribution

energy

operation
occupancy

Correct this!

t’ ∈ T

Correct this!

Force-Directed Scheduling Summary
• Very popular time-constrained scheduling

algorithm.
• Uses “forces” to balance the operation

concurrency for high utilization of functional
units.

• Cannot enforce resource constraints, (can
only attempt to minimize them)

List Scheduling (1)
• Resource allocation : R = { r(m) | m ∈ M }
• Start from t = 0, and increase t until all

operations have been scheduled (let δ(vSRC) = 0,
σ(vSRC) = 0)

• Condition for operation vj to be scheduled at t :
σ(vi) + δ(vi) ≤ t for ∀ eij = (vi, vj) ∈ E

(all predecessors of vj must be scheduled)
r(σ, ρ(vj), t) ≤ r(ρ(vj))

(resource occupancy must not exceed the constraint)
• If there are more operations to be scheduled

than the resource constraint, choose the
operations according to some priority function

Mobility μ(v) : smaller mobility has higher priority
Longest path to vSINK : longer path has higher
priority

II I

O

v0 v1 v2

v3 v4 v5 v6

v7 v8

v9

v10

v11

v12

vSRC

vSINK

t Ready list (MULT-I) Ready list
(ADD-I)

0

1 3[1,2], 4[1,2] , 5[1,5], 6[1,5]

2 5[2,5], 6[2,5]

3 5[3,5], 6[3,5] 7[3,4]

4 9[4,5]

5 10[5,6] 8[5,7]

6
7 11[7,8]

II I

O

[0,1] v0 v1 v2

v3 v4 v5 v6

v7 v8

v9

v10

v11

v12

[0,4] [0,1]

[1,2] [1,2] [1,5] [1,5]

[3,4] [3,7]

[4,5]

[5,6]

[7,8]

[8,9]

r(MULT-I) = 2
r(ADD-I) = 1

List Scheduling (2)

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9 v10
v11 v12

0 0 1 1 1 0 1 0
2 2 2 2 1 1 0 0

ADD-I
MULT-I

0
0

scheduled
operations

List Scheduling Summary
• Very simple, easy to implement
• Cannot enforce time constraints
• Scheduling quality depends on the definition

of priority function used.
– Scheduling quality depends on the definition of

priority function used.

Other Topics on
Scheduling Problems

• More realistic resource cost function
– Not only # functional units, but also # registers, #

buses, # IO ports
– Formulate these costs in the force-directed

scheduling
• Parallelism limited inside basic-blocks (data-

flow graph)
– Path-based scheduling : all control paths are

extracted and scheduled independently (therefore,
basic-block boundaries can be ignored), and later
combined to obtain the overall scheduling.

High-Level Synthesis Flow
A) Design capture (HDLs, C/C++, signal-flow graph,

etc)
B) Compilation to internal representation

• Data-flow graph (DFG)
• Control-flow graph (CFG)
• Control-data-flow graph (CDFG)

C) Resource allocation
• Specify available functional units

D) Operation scheduling
• Assign each operation to control steps

E) Resource binding
• Assign each data to registers
• Assign each operation to functional units

	VLSI System Design�Part V : High-Level Synthesis(2)�Oct.2006 - Feb.2007�
	High-Level Synthesis Flow
	Synthesis Constraints and �Cost Functions
	Module Library
	Resource Assignment and Allocation
	Resource Assignment Example
	Operation Scheduling (1)
	Operation Scheduling (2)
	ASAP (As-Soon-As-Possible) Scheduling
	ALAP (As-Late-As-Possible) Scheduling
	Resource Occupancy
	Operation Scheduling (3)
	Mobility and Partial Scheduling
	Force-Directed Scheduling (1)
	Force-Directed Scheduling (2)
	Force-Directed Scheduling (3)
	Force-Directed Scheduling (4)
	Force-Directed Scheduling (5)
	Force-Directed Scheduling (6)
	Force-Directed Scheduling (7)
	Force-Directed Scheduling (8)
	Force-Directed Scheduling (9)
	Improvements in � Force-Directed Scheduling
	Force-Directed Scheduling Summary
	List Scheduling (1)
	List Scheduling (2)
	List Scheduling Summary
	Other Topics on �Scheduling Problems
	High-Level Synthesis Flow

