VLSI System Design
Part Il : Logic Synthesis (2)

Oct.2006 - Feb.2007

Lecturer : Tsuyoshi Isshiki

Dept. Communications and Integrated Systems,
Tokyo Institute of Technology

Isshiki@vlsi.ss.titech.ac.|p
http://www.vlsi.ss.titech.ac.jp/~isshiki/VLSISystemDesign/top.html

mailto:isshiki@vlsi.ss.titech.ac.jp

Multi-Level Logic Optimization (1)

« Limitation of two-level logic: When describing the logic circuit
In two-level logic, even in its optimized form, the number of
cubes can grow exponentially to the number of variables (such
as arithmetic circuits).

« Multi-level logic optimization is done by iteratively modifying
the structure. Objective functions can be area (circuit size),
speed, and/or power consumption.

« Boolean Network : Directed acyclic graph G(V, E) to represent

multi-level logic c d ceab
— Each node represents a two-level logic.
— Each arc represents logic variables. v v v
[G:c+de] H=a+ bc
\ YVVY /
[F = abG + eH]

Multi-Level Logic Optimization (2)

* Operations of logic structure modification

— Decomposition : decompose a function (node) described in
sum-of-product form into multiple smaller functions by factoring

s ExX: F=a-b+b-cta-c>G=a+bF=c-G+a-b
— Extraction : decompose multiple functions with common
subfunctions
e EX: F=a-b+b-cta-c,cG=a-d+b-d+a-c,
—->H=a+bF=c-H+a-bG=d-H+a-c
— Collapsing : merge multiple functions into a single function by
expanding into sum-of-product form
e ExX: G=at+bF=c-G+a-b>F’'=a-b+b-c+a-c

Multi-Level Logic Optimization (3)

o Circuit size and number of literals
— Any logic circuit can be implemented using only 2-input
NAND gates (NAND2 gates) and inverters (INV gates).
— Let L(f) be the number of literals for node f. The number of
NAND?2 gates required to implement f is L(f) — 1. Note that
this is independent of the actual functionality.

— The number of NAND2 gates to implement N nodes f; (i = 1,
2,....,N)is2; L(f)—N.

» The term “gate count” usually refers to the number of
NAND?2 gates in the circuit implemented only with NAND2
gates and INV gates. This is easily calculated by counting
the number of literals and the number of nodes in the
Boolean network.

Boolean Division

Given two nodes f and g, decompositionf=g-q+ r (q#¢) is
referred to as Boolean division. If there exists g such that r = ¢,
g is the Boolean factor of f, otherwise g is the Boolean divisor
of f.

Optimization methods using Boolean division:

— Factorization : For node f, compute g, g and r such that f =
g- g+ r and the total number of literals included in g, g and
r is minimized. Repeat this operation on the newly added
nodes (g, g and r) recursively.

— Extraction : For nodes f, and f;, compute the common
Boolean divisor g and decompose these nodes to f,=g- q,
+r,andf,=g-q,+r,.

Complications in Boolean division :

— Given f and g, decomposition f = g- g+ r can have multiple
solutions for g and r. Therefore, merely computing the
optimal divisor g can become too complicated.

Algebraic Division (1)

The support for g, denoted as sup(g) is defined as a set of variables
which appear in g (either complemented or non-complemented). On
functions g and q, if the two do not contain any common variables, g
and g is said to be orthogonal and written as g L g or sup(g) m sup(q) =
Q.

Given fand g, if there exists g #¢such that f=g-qg+randg_l q,
then g is the algebraic divisor of f. Furthermore, if g is not the
algebraic divisor of r (0 = ¢ which satisfiesr = g-q + r’ does not
exist), q is the algebraic quotient and written as g= f/ g. In this case,
r is the algebraic remainder (satisfies r / g = ¢).

On algebraic divisionf=g-q+ r, if r = ¢, then g is said to evenly
divide f. Here, gand g are both the algebraic factors of f.
Algebraic division is a restricted form of Boolean division where the

division solution becomes unique (can assume that variables are not
Boolean but merely algebraic)

Algebraic Division (2)

« Changes in gate counts by algebraic divisionf=g-q+r

On node f, let L() be # of literals and C(f) be # of cubes.

of literals in the original node f (obtained by collapsing the right side
expression) is calculated as L(f) =L(g) - C(q) + C(g) - L(q) + L(r) (When
collapsing the term (g - q), each literal in g is duplicated C(q) times and
each literal in q is duplicated C(g) times). Here, # of gates required is
L(f)-1.

The 3 new nodes g, g and r includes a total of L(g) + L(q) + L(r) literals.
These 3 nodes consumes a total of L(g) + L(q) + L(r) — 3 gates.

After the decomposition, f is expressed with 3 literals g, g and r (this
consumes 2 gates). This results in a total of L(g) + L(g) + L(r) — 1 gates
after the decomposition.

Thus, L(g) (C(g) - 1) + L(g) (C(g) - 1) gates are saved by this
decomposition.

* By applying the algebraic division on the two functions with a
common divisor f,;=g-q,+ r,, ;=9 - g+ 1y :

L(9) (C(aqp) + Clay) - 1) + (L(gp) + L(ay)) (C(9) - 1) - 1 gates are saved.

Algebraic Functions and Sets

» In algebraic division, expressions are treated as algebraic
functions.
» Algebraic functions and class calculus (set theory)

— Variables do not represent a set, but merely an element for the
cube set. Complemented and non-complemented variables are
treated as separate names.

— A cube is a set of literals.

— A cover (sum-of-product) is a set of cubes.

— Examples:
f=ab+ bc= {ab, bc}, g=b={b}, h=ab= {ab}
foh,butftg,fdg
(in Boolean space:foh,fcg,hcQ)
fhng=¢,fnh=ab
(in Boolean space:fng=ab+ bc,fnh=ab+ abc=ab)

Multi-Level Logic Optimization
With Algebraic Division

* Need efficient implementation of algebraic
division computation method (given a divisor)

 Need methods for selecting good divisors
— Select divisors with large # of literals and cubes
— cubes, kernels

— Select divisors which are common among multiple
functions.
— common cubes, nontrivial kernel intersections

Algebraic Quotient Calculation (Method 1)

» Calculate f/ g by intersecting cube factors sets
— Describe the two given nodes f and g as sets of cubes:
- f={a, &,a1} 9={b, b, ..., b}

— Fori=1,2, ..., 19, calculate a set of cube factors on b; with
respect to each cube g, € f:

 g={clc;=a/b=gaecf,beg}

- f/lg=qg,ng,n...N Q-

(note: operator N is set intersection, not a logical-AND)
Ex:f=abc+ abd+ ce+ bce+ de,g=ab+ e

f = {abc, abd, ce, bce, de}, g = {ab, €}

g ={c,d}, q = {c, bc,d}

flg= QoM Gy = {E,d}

f=(ab+ e) (c+ d)+ bce

Cube-Literal Matrix (1)

Cube-literal matrix for algebraic division

— Assign cubes to rows and literals (both non-
complemented and complemented) to columns.

— If the cube on the i row includes the literal on the j®"
column, set element (i, j) to 1, otherwise set to 0.

— Bit vectors assigned to each Ex : f= abc + abd + bce + de
cube can be seen as indices. I

e ind(abc) =101100 =44
e ind(bce) = 010101 = 21
— The inverse of the index
function can be defined also: abd

+ ind(001111) = bede bee
. ind-(101000) = ab de

©C OFr L O
o O O T
© O r T
O O Fr o0
R O = O QO
P P O O o

Cube-Literal Matrix (2)

 Propositions on cube-literal matrix
1. For cubes ¢ ,and ¢, ¢ is an algebraic factor of ¢ if and only if
ind(c;) & ind(c;) = ind(c)
(‘&' is a bitwise AND operator).

2. If ¢ is an algebraic factor of ¢, then the index value for the
evenly divided quotient ¢, / ¢; can be written as

ind(c; / ¢) = ind(c) " ind(c)
or ¢/ ¢ = ind*((ind(c) ~ ind(c))
("M Is a bitwise EXOR operator).

Algebraic Quotient Calculation (Method 17)

Calculate f/ g using cube-literal matrix

a, : cube on the k™ row of the cube-literal matrix for f ;
b, : cube on the k* row of the cube-literal matrix for g ;
g = U (universal set) ;
FOR(i=1to|g]){
q=9,
FOR (j=1to|f]) {
//'1f b; Is a factor of a;, add a;/ b;to g’
IF (md(b) & md(a) = md(b))
q' = g + {ind*((ind(b) ~ ind(a))} ;
}
qa=qnNq’;

Calculation of Algebraic Quotient (3)

Ex:f=abc+ abd+ ce+ bce+ de,g=ab+ e
f = {abc, abd, ce, bce, de}, g = {ab, €}
= {c,d}, q, = {c, b, d}

f/g 0o N 0, = {C, d}
f=(ab+ €) (c+ d) + bce

abbccde abbccde

f: abc 1 011000 f: abc 1 011000
frabd 1. 1010010 f: abd 1010010
i r B B e P
f: bce 0100101 j.f:_bce 0100101
f:de 0O OO0 O0OT11 “if o de 0O 0O0OOOTZ11
Q- C 000100 0: g C 0001000
o2 d L 0000010 {0t be 0100100
Gid L 0000010

Cube-Literal Matrix (3)

Propositions on cube-literal matrix

3. For cubes c and ¢, if ind(c) <ind(c), then ¢; cannot be the
algebraic factor of c.

(applies to any column order)

4. Forcubesaef,b,beg leta/b=ganda/b =g If
ind(b,) >ind(b,), then a, /b, ¢ f/g.
(cube & / b is not included in the quotient f/ g)

Algebraic Quotient Calculation (Method 2)

Calculate f/ g by cube-literal matrix with pruning

Merge the two cube-literal matrices for f and g, and sort the rows in the
increasing order of the cube indices.

c, : cube on the k" row ;
max =|f|+|g]|;k=max:qg=U (universal set);

REPEAT {
WHILE (c, € f) {// move c, to the last element of g in the list.
k=k-1,;
if (k =0) return q; // all elements are evaluated.
}

g = ¢; mark row K ;
FOR (j =k + 1 to max) {
IF (ind(c,) & ind(c;) = ind(c,)) {
q' =g’ + {ind*((ind(c;) " ind(c,))} ;
mark row j ;
}
}
q=gnq;
IF(Q=¢)return ¢;//T/g=¢
delete all marked rows ;
k =k —1; max = max — (# of marked rows) ;

Calculation of Algebraic Quotient (3)

= ab+ bd+ ae

Ex : f= abc + abd + bcd + ace + abde, g

={c}

Vjooddo oo vlo o

Sl 1000 A0 A Tld -

COlOlOOlOm.M olo -

bOOOOlllO_n_w oo o

_b1100000110ﬁ_b11

a001_1_1_1_1_1d, ©|© O

S, 0

I

***e..q %

B B88R 5515 83

oL oL O e .
Vjooddo oo - Voo d A -
D]l HdHo0oo0O0 A0 A TlddoO o
Voo do o Ao OjoH O +H o
QoocoocooddH0O0 Qoo o oo
@l 1 oo o0co0co A |Qld+d o0 o -«
ClO O A o - Clo O d d
cT o Qa3 o8 dd@&b*%
8e8gR®l88 [BR<gR
D Do O — D O

{c}|a

q’:

={c}

q = {c bd}, q

Multi-Level Logic Optimization
With Algebraic Division

* Need efficient implementation of algebraic
division computation method (given a divisor)

 Need methods for selecting good divisors
— Select divisors with large # of literals and cubes
— cubes, kernels

— Select divisors which are common among
multiple functions.
— common cubes, nontrivial kernel intersections

Primary Divisor (1)

e Primary divisor : P(f)={f/c|cis acube}
(a set of algebraic quotients when dividing f by an arbitrary

cube)
— Ex;:f=abc+ ade— f/a= bc+ deis a primary divisor.

 Theorem 3: If gis an algebraic divisor of f,
then there exists p € P(f) such thatgcp.

— In other words, the set of primary divisors of f
contains all possible divisor of f.

e Collorary3.1:gcf/(f/qg).
— Considerf=g-q+r=qg- (f/g+r.(r/g= 9
— Letr=q-q+r.(rr/q=¢)
— Thenf=g-q+r=g-q+q-q+r=(g+q)-q+r
i lg)=f/lg=g+qd o¢g

Primary Divisor (2)

e Collorary3.2:1fgoqg,thenf/gcf/g.

— Letg=g +g’.Then:
f=g-(f/g)+r=(g+g’')-(f/g)+r
=g -(f/fg)+g’-(f/g)+r

— Leth=g’ - (f/g)+ r. By dividing hwith g, we get :
h=g - -q +r wherer' /g =¢.Then:
f=g-(f/g)+g-qg+r
=g -((f/g)+q)+r

— Sincer’ /g = ¢, the algebraic quotient for fdivided by g’ is
flg=(f/lg)+q

~flgc flg

Primary Divisor (3)

« Theorem 3: If gis an algebraic divisor of f, then there
existsp e P(f)suchthatgcp.
 Proof. Foracubecef/g,
» Since {c} cf/gand by corollary 3.2 > f/(f/g)cf/c
» By corollary 3.1 > gcf/(f/ Q)

s.gc fI(flgyc flceP(f)
» Cube-free: fis said to be cube-free if there are no

cubes which divide f evenly other than the universal
cube “1”.

(a cube-free function obviously includes two or more
cubes)

Kernel (1)

« Kernel is a set of primary divisors which are cube-
free:

K(f)={k| ke P(f),kiscube-free}
« O-level kernel set K (f) Is a set of kernel which do not

contain other kernels. — Often, 0-level kernel set Is
used for divisor candidates.

 EXx:f= abc+ abde+ abeg.

— f/a= bc+ bde+ begis a primary divisor of f but not a kernel
since b is the algebraic factor of f/ a.

— f/(ab) = c+ de+ egis a kernel (there is no cube that can
divide c + de + eg evenly). Here, ab is called the cokernel of
the kernel f/ (ab).

— f/(abe) = d + gis a O-level kernel (its cokernel is abe).

Kernel (2)

e Algebraic factorizationonf=ac+ ad+ bc+ bd + be:

» Use literals as divisors
fla=c+d —f=a(c+d)+bc+bd+be=a(c+d)+b(c+d+ e
f/lb=c+d+e—f=Db(c+d+e+ac+ad=b(c+t+d+e+a(c+d
flcz=a+b —f=c(a+b)+ad+bd+be=c(a+b)+d(a+ b)+ be
f/d=a+b —f=d(a+b)+ac+bc+be=d(a+b)+c(a+ b)+ be
» Use kernels as divisors
f/c+d=a+b — f=(c+d)(a+b)+ be
f/c+d+e=b — f=(c+d+eb+ac+ad
=b(c+d+e+a(c+d

f/@a+b)=c+d — f=(a+b)(c+d)+ be

* In many case, by using kernels as divisors, more
compact formulation can be derived with smaller
number of steps.

Computing the Kernels (1)

Algebraic cube division on cube-literal matrix f/ c (cis a cube)
— Disable all columns whose corresponding literals are included in c.
— Disable all rows having 0 in one of the disabled columns.

— The remaining sub-matrix, consisting of enabled columns and
rows, is the quotient. This sub-matrix can be described by a pair
of bit-vectors Vy and V.. indicating the enable/disable status of
each row and column, without rewriting the entire matrix.

Ex : f = abde + acde + bcde

f/ c= ade+ bde f/ac= de flcd=ae+be f/cde=a+b

Computing the Kernels (2)

Basic flow of kernel computation

A)
B)

C)

D)

Push the original (nontrivial) function to STACK.

Pop a function from the STACK, and divide this function by the
largest cube factor (divides the function evenly) so that the
guotient becomes cube-free. The resulting quotient is a kernel.

For each literal L in the original function, divide the obtained

kernel by L. If the resulting quotient is nontrivial, push this

guotient to STACK.

» Computation pruning strategy : When dividing the obtained kernel by
each literal, skip the ones which have already been evaluated prior to

being pushed onto STACK. (Put an attribute of the dividing literal to
each function being push onto the STACK)

Go to B).

Kernel Computation Algorithm

STACK=¢:K= ¢;
Generate the cube-literal matrix M on given function f ;
L=0;W = (# of columns of M) ;
PUSH [M, L] to STACK ;
WHILE (STACK is non-empty) {
POP [M, L] from STACK;
IF (column i have 1's on all enabled rows for some i <L)
continue ; // skip further computation
make M cube-free; // disable columns having all 1’s
K=K+ {M};
FOR(=L+1toW){
IF ((column j is enabled) &&
(# of 1's on enabled rows in columnj) >1){
disable all rows i in M where M(i, j) = 0;
disable column jin M ;
L=j+1;
PUSH [M, L] to STACK ;

Kernel Computation Example (1)

' (not cube-free)

f = abde + acde + bcde

make cube-free

.................. disable columns
with all 1's

M,/ cde

disable rows
with 0's on =%
factored literal

kernelset: K={bc+ac+ ab,b+c,a+c,a+b}
O-level kernel set: K,={b+c,a+c,a+b}
O-level cokernel set : CK, = {ade, bde, cde }

Kernel Computation Example (2.a)

f = abc + abd + bce + ace + bde

R, OOOooT
ROoORrEFkOoo
oOr oo Rra
CORrREF PO

Kernel Computation Example (2.b)

f = abc + abd + bce + ace + bde

© oo+ o
A ek =R=X= Ny
P OoORrREFk OO0
orocora
OO FFFOD

K = {abc+abd+ bce+ace+ bde, ce+bd+bc, b+e, c+d,

Iilr((l)l?:(il;rsﬂrr]g c+d, betaetab, a+b, betab, bd+bc+ac}
(M,/ abis K, = {b+e, c+d, c+d, at+b, bet+ab}
alroeady CK, = {ab, ac, be, ce, d}

calculated)

Multi-Level Logic Optimization
With Algebraic Division

* Need efficient implementation of algebraic
division computation method (given a divisor)

 Need methods for selecting good divisors
— Select divisors with large # of literals and cubes
— cubes, kernels

— Select divisors which are common among
multiple functions.
— common cubes, nontrivial kernel intersections

Rectangles in Cube-Literal Matrix

 Arectangle (R, C) in the cube-literal matrix M is a subset of rows R and
subset of columns C such that M(i,j) =1 foralli e Rand j € C.

A corectangle (R, C) is the same row subset R with the complement
column subset of C (C'=C).

* A containment of rectangles is defined as :
(Ry, Cp) = (R, C)) implies Ryc R, and C, < C,.
* A prime rectangle is a rectangle not contained by other rectangles. On
the cube-literal matrix :

— Prime rectangle represents a cokernel.
— Corectangle of a prime rectangle represents a kernel.

kernel _cokernel Ex : f = abde + acde + bcde
(corectangle) (prime rectangle)

f/de= bc+ac+ab f/ade b+ c f/bde a+c f/lcde=a+ Db

Common Cube Extraction
by Rectangle Covering (1)

« Common cube extraction within multiple functions:

— Common cube is a common divisor among multiple
functions in the form of a cube.

— Common cubes can be extracted by generating the cube-
literal matrix for the multiple functions, and extracting
rectangles (R, C) on this matrix such that |R|>2 and |[C| > 2.

— Maximal common cubes are the cubes which are not
contained (in the algebraic sense) by other cubes. Such
common cubes correspond to prime rectangles, and can be
extracted by applying the same algorithm for computing the
kernels on this matrix.

bdf + be

abfg + bcdf, H

abc + abdf + eg, G

Common Cube Extraction
by Rectangle Covering (2)

F

Do AdHO OO DoodHdo0 0o
fO.O.llO fO.OlIO
VDloodoood VDood oo o
TloHoodHd0O dO.OOIO
OfHoood0 O OHOoOOOd0O O
alEOOO ClHd1o0o-d4 000
LuLuLoOoOoITT LuLuLoOooITT
Dood-Ho0o oo Doboo-dHO OO
—loHdo A4 40O —loHdo A 4140
Dloodoood PooHdHoOo OO
TloHdood-d0O TloHdood-d0O
O Hoood0 O 3] ooo o o
o) o 101-11
Tl A1 O 140 0O

LLuLOOITT

Cost Function of Rectangles on

Cube-Literal Matrix

» Difference in total # of gates before and after the extraction
» # of literals = # of 1s in matrix
> # of gates = # of literals — # of nodes

abocdefg
F|1 1 1 00 00
F|1 1 01010
F|0 00 0101
G|1 100011
G|01 11010
H|{0O 1 01010
H|{0O 1 00100

F = abc + abdf + eg
G = abfg + bcdf

H = bdf + be

22 literals, 19 gates

Divide by ab

>

abcdef gX F
X[110000O0O0 O
F,|/0 0100000 O
F,|/0 0010100 O
F|00O0O0OO@OT1 1
F|I000O01010 O
G|00O0OO0OO0O111 O
G|01110000 O
H|{01010100 O
H|{0100100O0 O

21 literals, 16 gates
Cost(R,C)=16-19=-3

X=ab
Fy=c+ df
F=XF,+eg
G = Xfg + bedf
H = bdf + be

Breakdown of Cost Function (1)

o Step 1: extract cube C
» Weight(R, C) = # of 1s in rectangle (R, C)

v If all elements are 1, then Weight(R, C) = |R|*|C]|
» Overhead(R, C) = |R| + |C|
v |R| : # of appearances of cube C
v |C]| : # of literals in cube C
» Difference in # of literals = Overhead(R, C) — Weight(R, C)
> # of nodes added = 1 (to compute cube C).

abcdefg
FIT T 10000
F|1 101010
F{0O0OO0OO0OT1O01
G[1 100011
G|[0o1 11010
H|0 101010
H|0 100100
22 literals, 19 gates

extract ab

| >
F = abc + abdf + eg
G = abfg + bcdf
H = bdf + be

abcdefglX
X 0 0 0 0 00

FIOO 10000

Flo oo1010
Floooo1o010]X=ab
G|[00oOo0ooO0O0O 11 F=Xc+ Xdf + eg
G[01110100|Gx=yxqgq+
HOlOlOlOOG_fg beaf
Hlo 10010 0 ol H=bdf+be

21 literals, 17 gates

Breakdown of Cost Function (2)

o Step 2 : divide by cube C
» Nodes containing only a single instance of C are already divided by C (no
change)
» If a node f contains 2 or more instances of C, then add a new node f- =f/
C (algebraic quotient of f divided by C)
v' Difference in # of literals : Merge(R, C) =2 x |Q" | — |R’|
Q’ = set of nodes containing multiple instances of cube C
IR’ | = (# of appearances of cube Cin Q’)
v # of nodes added : |Q’ | (# of new quotients f/C)

abcdef gX Q’ abcdef gX F
X0 000 00 (IRT=2) | X o0 00000 0
FIOO1 0000 | /000 1000 O 0
FIOOO0O 1010 ".EX‘:0001010I0
FI00 001010 Divide by X F|l0o00000O0O
G|0DO0O0O0T11 F{00001010 0|x=ap
G|011 10100]|y- Glooo0oO0O0O1 1pW O
Hlo1 010100 73 GOlllOlO’OFX:C"'df
H|o1001000lF=XctXdi+eg| ylo1010100 0|F=XF +eg
| G = Xfg + bedf H[01001000 0|G=Xxfg+ bedf
21 literals, 17°0ates H = bf + be 21 literals, 16 gates H = bdf + be

Breakdown of Cost Function (3)

Changes in # of literals when divided by cube C
» ALiteral(R, C) = Overhead(R, C) — Weight(R, C) + Merge(R, C)
=(RI+IC)-#1sin(R, C)) + (2 x[Q"|-|R"|)

Total # of nodes added : ANode(R, C) =|Q’|+1 | Q= Q-Q setofnodes

) o containing one instance of cube C
Changes in # of gates when divided by cube C | |r|- |r'|: # of appearances of

> AGate(R, C) = ALiteral(R, C) — ANode(R, C) gﬁ)gﬁ ;gfl?lz o =010
=(RI+IC)-#1sin(R,CN+(Q' -FIR' D=1 5 |0 |-|R|=]0]|-|R]

=ICl-#1sin(R,C)) +|Q| -1
where Q = set of nodes containing one or more instances of cube C

(IQ |- IR =QI-1IR]) abcde f g
> EX. FF1 " I5T 0 0 0 0
AGate({2, 5, 6}, {2,4,6))=3+3-9—-1=-4 | [F2" 0" 2 %]
AGate({1, 2,4},{1,2})=2+2-6-1=-3 G{i 10 0 0 1 1
G|071:1 /1% 0 1% 0

H|0 ;01 0 10

H|o 1 0 0 1 0 0

Overlapping of Rectangle Covers (1)

The cube abdf included in F can be covered by cube ab and cube bdf :
abdf = ab - bdf

(unfortunately, this cannot be derived from algebraic division)

-> “don’t-care” cubes

Don’t-care cubes can be eliminated (does not contribute to literal count or
gate count costs), but also can be used in algebraic division.

X = ab / Don’t-care cubes
F= abe + abdf + eg Fy = abc + abdf
ﬂ F=XF,+ &g
X=ab % ﬂ CAN factor out bdf
F,=c+ df X=ab X = ab
F=XF,+ eg Y = bdf — Y = bdf
F,= abc+ aY —
CANNOT factor out bdf X Fx=c+Y

F=XF,+ &g F=XF,+ eg

Overlapping of Rectangle Covers (1)

» Overlapping of multiple rectangle covers

» Instead of changing the 1s to Os in the rectangle, change to “don’t-
care” (marked ‘ * ’ below).

» Allow rectangles to cover “don’t-cares” as well as 1s.

abcdefg

Fel® 210000 _ _

F |©251 05150150 X=ab X=ab

F|0000O0T1O01 F,=c+ df Y = bdf

G %00011 F=XF+eg [y Fy=c+Y

G [0:1:1:1%0:1%0 X fo ncdf E= XFE._+

H 0 '."1_:. 0 :'.];.: 0 '.‘.:!_’: 0 G - X g + DC - X eg

H|0100100 H = bdf + be G=Xfg+ Yc
H=Y+ be

#oflsin(R,C)=8

AGate(R, C)

=|C| + (# nodes containing C) — (# 1sin (R, C)) -1
=3+3-8-1=-3

Overlapping of Rectangle Covers (2)

abcdefgg

O O 11O OO

O ¥ O« ¥ ¥ O

O O 1O O O

o ¥ O O ¥ ¥ O

— O O O 1 O O

kK ¥ O ¥ *x <«

¥ ¥ O ¥ O O O

e ooTT

abcdefgyg

O O 1O OO

O v O 1 O

O O 1O O O

O 1 O O« 1 O

— O O O 1 O O

¥ ¥ O ¥ =

¥ ¥ O % O O O

FXFXFGGHH

abcdefg

O O 1O OO

O 1 O 1« O

O O O OO -

O 1 O O O

— O O O 1 O O

T~ 1 O o A —

1 O 1O OO

Lo

O
o >
V|++m
+ XD 4
e] _I_If
mmexv
TR TIOR T [
X >WwuwoIT
g
5858
+
TN
B OX X 2o
o
X wuwoOIT
o
+...|
5 3
898
A
Q Y4— Y—
333
Tl
L OIT

Multi-Level Logic Optimization
With Algebraic Division

* Need efficient implementation of algebraic
division computation method (given a divisor)

 Need methods for selecting good divisors
— Select divisors with large # of literals and cubes
— cubes, kernels

— Select divisors which are common among
multiple functions.
— common cubes, nontrivial kernel intersections

Kernel Intersection for Optimizing
Multiple Functions (1)

A nontrivial function is a function with two or more cubes which
cannot be reduced to a single cube.

— f=abc+ abd is nontrivial
— g = abc + abis trivial because it reduces to a single cube ab.
— A cube-free function is nontrivial (therefore kernels are nontrivial)

Theorem 4 : On functions f and g, the two functions
have a nontrivial common divisor if and only If there
exist kernels k e K(f) and k; € K(g) such that ki, =k n
kyis nontrivial (called nontrivial kernel intersection)

Theorem 4 (necessity) : If f and g have a nontrivial kernel
Intersection, then they have a nontrivial common divisor.

» PROOEF hints : Simply show that a nontrivial kernel intersection ki,
IS the divisor for both fand g .

Kernel Intersection for Optimizing
Multiple Functions (2)

 Theorem 4 (sufficiency) : If f and g have a nontrivial common
divisor, then they have a nontrivial kernel intersection.

» PROOF sketches:

v’ Let d be the nontrivial common divisor for f and g. Make d cube-
free and call this e (If d is cube-free, then e = d. Otherwise, eis
the kernel of d).

v eis the common nontrivial (cube-free) divisor for f and g.

v’ By Theorem 3, there exist k; € P(f) , k, € P(g) such thatec k;, e
c k-

v' Since eis cube-free, such k and k;, are also cube-free.
Therefore both k; and k; are kernels for f and g, respectively (k;

e K(f) , ky € K(9)).
v Sinceec kN ky, and e is nontrivial (since it is cube-free), ki
kyis nontrivial.

Kernel Intersection for Optimizing
Multiple Functions (3)

 Implications of Theorem 4 :

» Nontrivial kernel intersections are nontrivial
common divisors.

- Good divisor candidate

> If there are no nontrivial kernel intersections, this
Indicates that there are no common divisors.

- Search for other types of divisors (common cubes,
kernels)

Kernel Intersection Extraction
by Rectangle Covering (1)

e Cokernel-cube matrix:
— Assign a distinct index to each cube in each node (starting from 1)
— Assign all cokernels to rows
— Assign all cubes contained in each kernel (kernel-cube) to columns.

— At each matrix element, assign the index of the cube which is
formed by the product of the kernel-cube (row) and its
corresponding cokernel (column). If there is no such pair, assign 0.

cokernel kernel ad b ¢ d e

1 y) 3 4 5 F ad b+c Fad 0 1 2 0 O

F = abd+acd+ bc+ bf+cf F b ad+ c+f Fb 1 0 3 0 0
6 7 8 g F]E; Ed+b+f Fc 2 3 0 0 O

_ F +C Ff 0 4 5 0 0
G = adf+bf+cf+ef G f ad+b+c+e Gf 6 7 8 0 9
10 11 12 H ¢ bt+e Hic 0 11 0 0 12

H = ade+bc+ce H e ad+c Hie 10 0 12 0 0

O O O O U1l b O —

Kernel Intersection Extraction
by Rectangle Covering (2)

 Arectangle (R, C) in the adb c de T 1 2 3 4 s
cokernel-cube matrix Misa |Fad 01 2 0 o o[F= abd+acd+bc+bf+cf
subset of rows R and Fb 1 0 3 0 0 4 6 7 8 9
subset of columns C such I';f g j g 8 8 g G = adf+bf+cf+ef
tha'[!\/l(l,J);tOfOI‘a”IER ot Il c o o 10 11 1
and | € C. Hc 0 11 0 0 12 o| H= adetbctce

* A nontrivial kernel He 10 0 12 0 0 O
intersection is a rectangle ngjen Changinghrecta}w'e e'GmGEtS

: to don’t-care, other elements wit
(R’ C) In cokernel-cube the same index needs to be changed
matrix such that |R| = 2 and db c d e/f/7
|C|22 F:-ad 9 * * 0 0 9/ X=b+c

. Also allow rectangle cover |F:b 70 3 0 0:% Fy = ad+f
overlap at “don’t-care” Fe wx 8 0 00 F = XFyerabdtacd+ber bi+cf
cubes. =r 0 0 0 0\ G= Xf+adf+bf+cf+ef

Gt 612 ER 09 01 1 = adet+bctce
Hc 0 11 0 0 12 0
Hie 10 0 12 0 0 0

don’t-care cubes

Kernel Intersection Extraction
by Rectangle Covering (3)

ad b c d e f
Fad 01 2 0 0 O
Fb 1 0 3 0 0 4 X = b+c
N
Gf 6 7 8 0 9 0 F = XF,+abd+acd+bc+ bf+cf
Hc 011 0 0 12 0 G = Xf+adf+ bf+cf+ ef
Hie 10 0 12 0 0 O H = ade+bc+ce
ad b c de f| xX=p+tc
rb om0 o +| YTaAd¥C
Fe * 3 0 0 o *| Fx=ad+f
Ef o0 *~ *x o0 o o| F=XF+Ybt+abd+acd+be+bf+cf
Gf 6 * * 0 9 0| G= Xf+Yf+adf+bf+cf+ef
Hc 0 11 0 0 12 0| H = Yet+adet+tbc+ce
He 10 0 12 0 0O O

Cost Function of Rectangles on
Cokernel-Cube Matrix

w,(i) : # literals in cokernel in row I.

w,(j) : # literals in kernel-cube in row j. X=Db+c
b(i, j) : Boolean flag on element (i, j) Fy = ad+f
— 0 (if M(i,) = 0 || M, j) = *") F = XF,+abd+acd+be+ bf+cf

G = Xf+adf+ bf+ cf+ef

— 1 (otherwise) H = ade+bc+ce

Weight(R, C) = ;g jcc b, i) (w,(i) + w(i))

Overhead(R, C) = £,_g W/(i) + Z;_.c W,()

Merge(R, C) = 2 x (# nodes containing cube C)

Aliteral(R, C) = Overhead(R, C) + Merge(R, C) — Weight(R, C)
ANode(R, C) = (# nodes containing cube C) + 1

AGate(R, C) = ALiteral(R, C) — ANode(R, C)

= = Zicr jec B,) W) + w,()

+ E g W (1) + E_cW() + (# nodes containing cube C) —1

Kernel Intersection Extraction
by Rectangle Covering

1 2 3 4
F = abd+acd+ bc+ bf+cf

6 7 8 9
G = adf+bf+cf+¢ef

10 11 12
H = adet+bc+ce

ad b c d e f
Fad 0 1 2 0 0 O
F:b 1 0 3 0 0 4
F.c 2 3 0 0 0 5
F:f 0 4 5 0 0O
G:f 6 7 8 0 9 O
H:c 0 11 0 0 12 O
He 10 0 12 0 0 O

Weight(R, C) = 14

Overhead(R, C) =6

Merge(R, C) =4

AliteralR,C)=4+6-14=-4

ANode(R, C) = 3

AGate(R,C)=-4-3=-7

X=Dbtc

Fy = ad+f

F = XFy+bc

G = Xf+adf+ef
H = adet+bc+ce

ad b c de f
Fad 0 * * 0 0 O
Fb * 0 3 0 0 *
Fc * 3 0 0 0 *
Ff 0 * * 000
Gf (6 *[* 0 9 0
Hc 0 11 0 0 12 O
He 10 0 12 0 0 O

Weight(R, C) =10
Overhead(R, C) =6

Merge(R, C) =6
AlLiteral(R,C)=6+6-10=2
ANode(R, C) =4
AGate(R,C)=2-4=-2

X=btc

Y = ad+c
Fy = ad+f
F = XFyt+YD

G = Xf+Yf+ef
H = Yetbc

F:ad
F:b
F:.c
F:f
G:f
H:c
H:.e

ad b

* O % O % * O

*

H
ol * * %o

* O *+ O * * O

O OO OO o oo

O * OO O OO

O O O O * % O —h

Multi-Level Logic Optimization Flow

Optimization schemes on a set of functions {f;}

A) Nontrivial common divisor extraction :
* (generate the kernel sets for each f..

« Select a pair of kernels k; e K(f)) and k e K(f;) where I #] such that
ki Nk Is nontrivial. If such kernel intersection exists, use k Nk as
divisors to divide all functions divisible by k M k.

B) Common cube extraction :

« Select a pair of cubes ¢ € f; and ¢, € f, where I #] such that ¢, " ¢
has 2 or more literals. If such common cube exists, use ¢, N ¢; as
divisors to divide all functions divisible by ¢; N ;.

v NOTE : intersections on cubes assumes cubes as a set of literals
C) Division decomposition on each function f; :
« Select a kernel k € K(f;) and divide f, by k.

	VLSI System Design�Part II : Logic Synthesis (2)�Oct.2006 - Feb.2007�
	Multi-Level Logic Optimization (1)
	Multi-Level Logic Optimization (2)
	Multi-Level Logic Optimization (3)
	Boolean Division
	Algebraic Division (1)
	Algebraic Division (2)
	Algebraic Functions and Sets
	Multi-Level Logic Optimization�With Algebraic Division
	Algebraic Quotient Calculation (Method 1)
	Cube-Literal Matrix (1)
	Cube-Literal Matrix (2)
	Algebraic Quotient Calculation (Method 1’)
	Calculation of Algebraic Quotient (3)
	Cube-Literal Matrix (3)
	Algebraic Quotient Calculation (Method 2)
	Calculation of Algebraic Quotient (3)
	Multi-Level Logic Optimization�With Algebraic Division
	Primary Divisor (1)
	Primary Divisor (2)
	Primary Divisor (3)
	Kernel (1)
	Kernel (2)
	Computing the Kernels (1)
	Computing the Kernels (2)
	Kernel Computation Algorithm
	Kernel Computation Example (1)
	Kernel Computation Example (2.a)
	Kernel Computation Example (2.b)
	Multi-Level Logic Optimization�With Algebraic Division
	Rectangles in Cube-Literal Matrix
	Common Cube Extraction �by Rectangle Covering (1)
	Common Cube Extraction �by Rectangle Covering (2)
	Cost Function of Rectangles on Cube-Literal Matrix
	Breakdown of Cost Function (1)
	Breakdown of Cost Function (2)
	Breakdown of Cost Function (3)
	Overlapping of Rectangle Covers (1)
	Overlapping of Rectangle Covers (1)
	Overlapping of Rectangle Covers (2)
	Multi-Level Logic Optimization�With Algebraic Division
	Kernel Intersection for Optimizing �Multiple Functions (1)
	Kernel Intersection for Optimizing �Multiple Functions (2)
	Kernel Intersection for Optimizing �Multiple Functions (3)
	Kernel Intersection Extraction �by Rectangle Covering (1)
	Kernel Intersection Extraction �by Rectangle Covering (2)
	Kernel Intersection Extraction �by Rectangle Covering (3)
	Cost Function of Rectangles on Cokernel-Cube Matrix
	Kernel Intersection Extraction �by Rectangle Covering
	Multi-Level Logic Optimization Flow

