
1

VLSI System Design
Part VI : Advanced Topics

Oct.2006 - Feb.2007

“C-based Design Framework for
Multiprocessor-SoC Synthesis

Lecturer : Tsuyoshi Isshiki
Dept. Communications and Integrated Systems,

Tokyo Institute of Technology

isshiki@vlsi.ss.titech.ac.jp
http://www.vlsi.ss.titech.ac.jp/~isshiki/VLSISystemDesign/top.html

mailto:isshiki@vlsi.ss.titech.ac.jp

2

Outline

• Background: Multiprocessor SoC designs
• Tightly-Coupled Thread (TCT) model

– TCT programming model : a seamless design
conversion from a sequential program (in C) to a
concurrent execution model

– TCT concurrent execution model
– TCT compilation flow
– TCT verification tools

• Current research status and future works

3

Multiprocessor System-on-Chip (1)

• Multiprocessor System-on-Chips (MPSoCs) are quickly
becoming the next trend in VLSI technology
– Programmable functional blocks: short design time, easy

verification, design changes after chip fab and during product life
cycle.

– Applications: mobile phones, printers, network routers, etc.
• Enabling technologies in MPSoC design

– System-level modeling (System-C, SpecC)
– HW/SW interface codesign
– Configurable processors
– Platform-based designs (CPU+busses+IPs)

4

Multiprocessor System-on-Chip (2)

• Challenges in MPSoC designs
– MPSoC design methodology: not yet established
– Heterogeneous processors, busses, memories

parallelizing compilers for homogeneous
multiprocessors cannot be applied to MPSoC designs

– System partitioning / concurrent behavior modeling:
• System behavior modeling often start from references in C
• System partitioning and concurrent behavior modeling : can

be facilitated by SystemC or SpecC
• Crucial early design phase : large impact on the final SoC

design
• Time consuming manual process

Difficult to evaluate many system partitioning configurations

5

Ex: Automotive control system

sensor

Challenges of Developing
Complex Embedded Systems

Body Control

Automatic Transmission Control

Navigation・VICS

ETCSafety support

Mobile communication

Engine Control

Multimedia（radio・TV・CD・DVD） LAN

actuator

wireless

High reliability
Real-time response

Increasing functionality
of electronics control

systems

cost reduction
(design/production)

Complex
system

environment

High performance
processing

Small size
Low power

wirelesswirelesswireless

6

Current Status of SoC Design

• Increasing size and complexity (both SW and HW)
• System environment

– Large number of concurrent events, real-time requirements
– Huge cost in system verification and debugging

• System requirements
– Functionality, power, performance, development cost, production cost,

yield, reliability, portability, flexibility
• Slow growth in design productivity

– Design methodologies highly dependent on CAD vendor tools
– Absence of CAD technologies for application-specific design needs

• Design reuse, platform-based designs
– Fixed SoC architecture
– High overhead costs for IP qualification and IP integration

Higher design cost ===== Lower design quality

7

Current System-Level
SoC Design Flow

System specification

System modeling

System partitioning

Architecture design

System verification

Manual design refinement
・Low design productivity
・Bug-insertion risks
・High design change cost
・High design optimization

cost
⇒Insufficient cost model

at abstract design
phases

⇒Fundamental limitation
of manual designs
themselves

Huge debugging cost
⇒Insufficient system-

level environment
model

Environment, Functionality,
Performance, Power, Cost

Spec. analysis, Environment
modeling, Algorithm design

Concurrency extraction,
Communication insertion

SW/HW binding,
Processor, Custom HW core,
Bus system, Memory system

Debugging on HW prototype,
Simulate actual environment

D
es

ig
n
 F

lo
w

8

System-Level SoC Design Flow:
Current Problems and Future Solutions
• Manual process during design refinement

– Large description gaps between design levels: bottleneck in design productivity
– High risks of bug insertion: huge debugging costs
– High costs for design changes (spec. changes, bug-fix, performance tuning)

• Insufficient design methodology for highly-parallel multiprocessor SoC
architectures
– System parititioning, concurrency extraction all manually designed
– Limited architecture exploration due to low design productivity
– Huge system verification cost (need to simulate actual system environment)
– Absence of effective Real-time OS for MPSoCs

• Insufficient system-level design optimization environment
– Algorithm optimization: implementation refinement of algorithms and data

structures
– System partitioning optimization: parallel task partitioning, task scheduling
– Architecture optimization: SW/HW partitioning, processor configuration, HW

synthesis, bus architecture, memory architecture
System-level design automation tool chain for drastic increase in design
productivity
Establishing a robust system-level design optimization platform
Establishing a systematic design methodology for highly-parallel MPSoCs

9

Next Generation MPSoC
Architecture

uP
uP

uP

HW

HWHW
actuator

speaker

display

actuatoractuator

LANwireless

sensorsensorsensor

microphone

camera

touch panel

Highly-parallel scalable architecture
Heterogeneous multiprocessors

Customized HW cores

High bandwidth
interconnect

High speed interface

Optimized system-level partitioning
MPSoC Real-time OS

QoS-guaranteed MPSoC multitasking
System-level power management

displaydisplay

• Complex system environment:
– Large number of peripherals
– Highly concurrent under tight timing budget

• Highly-parallel scalable architecture:
– Heterogeneous multiprocessors and customized HW cores
– High bandwidth interconnect and high speed interface

• Fully optimized at system-level:
– SW/HW designs (algorithms, processors, cores, architectures, interconnects)
– System management (low-power, QoS guaranteed multitasking, concurrent event

distributions)

Distribution of
concurrent

event handlers

10

SW/HW binding,
Processor, Custom HW core,
Bus system, Memory system

Concurrency extraction,
Communication insertion

Next Generation System-Level
SoC Design Flow

System specification

System modeling

System partitioning

Architecture design

System verification

System-level optimization platform
・Algorithm design
・Application-specific processor design
・Custom HW core design
・System partitioning, concurrent modeling
・MPSoC architecture exploration
・Architecture evaluation model generation

Creation of high quality IPs

Environment, Functionality,
Performance, Power, Cost

Spec. analysis, Environment
modeling, Algorithm design

Debugging on HW prototype,
Simulate actual environment

D
es

ig
n
 F

lo
w

System-level SoC synthesis platform
・System-level design automation tool chain

Drastic increase in design productivity
Elimination of bug-insertion risks
Easy design changes

Ultra-fast system-level simulation platform
・Ultra-fast MPSoC simulation model
・System environment simulation model

Drastic reduction in verification costs

11

Next Generation System-Level
SoC Design Flow

Parallel process modeling
Architecture cost modeling

System-level design automation tool chain

System-Level
Simulation Technology

System-Level
Modeling Technology

System-Level
Synthesis Technology

System-Level Design
Optimization Platform

Algorithm optimization
System partition optimization
Processor architecture optimization
MPSoC architecture optimization

System environment simulation model
MPSoC real-time OS model
Ultra-fast MPSoC simulation model

12

Tightly-Coupled Thread (TCT) Model

• TCT model is a totally new framework which generates
a concurrent execution model of tightly-coupled threads
for functional blocks in MPSoCs.
– TCT programming model provides a seamless design

conversion from sequential C codes.
– TCT concurrent execution model implements a wide variety of

concurrent models such as pipelining, data parallelisms, task
parallelisms, as well as their combinations.

– TCT compiler automatically generates thread-level
communication and synchronization instructions via explicit
message passing to implement a fully distributed memory
system.

– TCT simulator schedules the sequential execution traces for
evaluating the concurrent execution time, communication
bandwidth, etc.

13

TCT Programming Model (1)

• Drastically simple programming model
Simply insert thread scope definitions in the C code

– Syntax:
THREAD(name) { statements }

– Thread scope header introduces a new thread labeled “name” in
the program

– Thread scope can have any compound statements in C, and
also other thread scopes (thread scopes can be nested)

thread scope header thread scope

14

JPEG Encoder Example
void JPEGtop(FILE *fp){

int i, ii, j;
short DCy=0, DCcb=0, DCcr=0; // DC values
buf_state state; // for bitstream buffer state
state.put_bits = 0; state.put_buffer = 0;
for(i = 0; i < imageSizeYPadding;){

for(ii = 0; ii < 8; ii ++){
ReadOneLine(fp, i ++); // row 0: RGB->YCbCr
ReadOneLine(fp, i ++); // row 1: RGB->YCbCr
THREAD(Dsamp) { DownsampleCbCr();} // 4:1 on CbCr

}
THREAD(BLKcore) { // call the core functions

int nR = (i - 8 >= imageSizeY); // 2nd row is dummy
for(j = 0; j < imageSizeX; j += 16){

int nC = (j + 8 >= imageSizeX); // 2nd col is dummy
THREAD(Y0) { // process Y components

BLK8x8(&Y0[j],0,&DCy,&state,0);
BLK8x8(&Y0[j+8],0,&DCy,&state,nC);

}
THREAD(Y1) { // process Y components

BLK8x8(&Y1[j],0,&DCy,&state,nR);
BLK8x8(&Y1[j+8],0,&DCy,&state,nC+nR);

}
THREAD(C) { // process Cb/Cr components

BLK8x8(&Cb[j>>1],1,&DCcb,&state,0);
BLK8x8(&Cr[j>>1],1,&DCcr,&state,0);

}
}

}
}}

thread scopes

Cb Cr

Y0

Y1

color components

8 pixels

15

TCT Programming Model (2)

• Compatibility to C standards :
– By disabling the thread scope header with a simple

preprocessor “#define THREAD(n)”, it can be
compiled with any standard C compiler to generate
the computational equivalent sequential executable.

• Thread allocations in function calls:
– Base-thread encloses the function body (all outermost

thread scopes are nested in the base-thread scope)
– On function calls, callee’s base-thread is replaced

with the caller thread (creating a thread nesting
structure through function calls)

16

Thread Nesting Through Function Calls

void BLK8x8(UCHAR *pcomp, int compID, short *DC, buf_state *gstate, int isDummy)
{

int coef[64],coef2[64];
short qcoef[64];
CopyBlock(pcomp,coef,compID,isDummy); // pcomp => coef
DCTcore(coef,coef2); // coef => coef2
THREAD(Q){
Quant(coef2,qcoef,compID); // coef2 => qcoef
if(isDummy == 0)
UpdateDC(DC,qcoef); // tmpDC=*DC;*DC=qcoef[0];qcoef[0]-=tmpDC;

}
THREAD(E){ // Huffman: qcoef -> stream output file
buf_state lstate; bit_buf buf;
EncHuff(&lstate,&buf,qcoef,compID);
WriteBits(gstate,&lstate,&buf);

}
}

void DCTcore(int *coefIn, int *coefOut){
int temp[64];
THREAD(Dr){...} // ROW : coefIn ->temp
THREAD(Dc){...} // COL : temp -> coefOut

}

Called from threads Y0, Y1, C

17

TCT Programming Model (3)

• Global thread slicing tree
– Expresses the thread scope nesting structure of the

entire application
– Function calls from different threads duplicate local

thread slicing trees

Dsamp BLKcore

Y0

Root

Y1 C

Dr0 Dc0 Q0 E0 Dr1 Dc1 Q1 E1 Dr2 Dc2 Q2 E2

duplicated threads

18

TCT Programming Model (4)

• Restrictions in thread scope usage
– Thread scopes must be a single-entry single-

exit (SESE) region
• no direct jumps into or out of thread scopes
• Acyclic control dependence between threads

– No recursive calls inside thread scopes
• To guarantee thread slicing tree structure

19

TCT Concurrent Execution Model (1)

• Concurrent model implied in JPEG example :
– 3 functional pipelines executing in parallel

Combination of functional pipelining and task parallelism with
complex data flow

C
CopyBlock

Dr2

Quant

UpdateDC

Q2

coef

temp

coef2

qcoef

Dc2

EncHuff

WriteBits

E2

CopyBlock

Dr2

Quant

UpdateDC

Q2

coef

temp

coef2

qcoef

Dc2

EncHuff

WriteBits

E2

state

DCcb

*Y0DCystate

Y0
CopyBlock

Dr0

Quant

UpdateDC

Q0

coef

temp

coef2

qcoef

Dc0

EncHuff

WriteBits

E0

CopyBlock

Dr0

Quant

UpdateDC

Q0

coef

temp

coef2

qcoef

Dc0

EncHuff

WriteBits

E0

state

DCy

Y1
CopyBlock

Dr1

Quant

UpdateDC

Q1

coef

temp

coef2

qcoef

Dc1

EncHuff

WriteBits

E1

CopyBlock

Dr1

Quant

UpdateDC

Q1

coef

temp

coef2

qcoef

Dc1

EncHuff

WriteBits

E1

state

DCyDCy

DCy

state state

state

DCcr

DCcb DCcr*Y1 *Cb *Cr

20

TCT Concurrent Execution Model (2)

• Physical allocation of threads
– Each thread is statically allocated to each processor
– Each processor executes its own code inside the thread scope

• Thread communication model and memory model
– External data transferred via message passing
– Buffered communication channel

• Finite buffer depth allocated at receiver side
– Distributed memory model : no remote memory access

CM

LM P

CM : communication module
LM : local memory
P : processor

CM

LM P

CM

LM P

interconnect

thread A thread B thread C

21

TCT Concurrent Execution Model (3)

• Combining data-driven and program-driven principles
– Program-driven (statically scheduled) thread execution
– Data-driven thread interaction

• Differences between other hybrid data flow machines
– Conventional notion of “threads” :

• Non-blocking (all external data available before thread activation)
• Compiler-driven thread partitioning (thread size tend to be small)
• Many dynamically scheduled threads to fill the execution pipeline

– Tightly-coupled threads :
• Blocking (thread activation is independent of data availability)

thread interaction through fine-grain data synchronization
• Designer-driven thread partitioning (thread can be of any size)
• Very simple execution model

allows easy processor customization

22

TCT Concurrent Execution Model (4)

• Thread activation and deactivation
– Activated by control dependent thread based on control flow

(“root-thread” processor activates by itself)
– Deactivates itself upon completion of thread execution
– No signaling of thread termination (not a fork-join model)

CM

LM P

thread A

CM

LM P

thread B
thread B is activated by its
control dependent thread A

thread activation signal

SLEEP

execute
thread
code

INIT

thread activation

system reset

END
buffer status
update

23

TCT Concurrent Execution Model (5)

• Data output synchronization:
– Data transfer instruction sends data directly to the receiver buffer
– If buffer is full, processor simply stalls until the buffer becomes

non-full again.
• Data input synchronization:

– Availability of external data checked by explicit data
synchronization instruction before the first use of the data.

– Processor simply stalls until data becomes available.

CM

LM P

thread A

CM

LM P

thread B

data transfer
data synchronization

24

TCT Compilation Flow (1)

1. Front end
– General C parsing + thread scope parsing
– File linkage

2. Internal program representation
– Interprocedural control flow graph (ICFG)

• CFG for each function (nodes colored with thread-IDs)
• Each caller node in CFGs linked to target function’s CFG

– Global thread slicing tree
• Thread instantiation and duplication

– Thread control dependence tree
• Similar to global thread slicing tree
• Expresses the distributed thread activation flow

25

Interprocedural Control Flow Graph
BLKcore

BLK8x8(&Y0[j],0,&DCy,&state)

BLK8x8(&Y0[j+8],0,&DCy,&state)

BLK8x8(&Y1[j],0,&DCy,&state)

BLK8x8(&Y1[j+8],0,&DCy,&state)

C6

L5

E5

BLK8x8(&Cb[j>>1],1,&DCcb,&state)

BLK8x8(&Cr[j>>1],1,&DCcr,&state)

j+=16

nR=(i-8>=imageSizeY)
j=0

C6:j<imageSizeX

nC=(j+8>=imageSizeX)

Y0

Y1

C

start:BLK8x8

CopyBlock(...)

Quant(...)
C7:isDummy==0

C7

UpdateDC(...)

E7

EncHuff(...)
WriteBits(...)

end:BLK8x8

Q

E

DCTcore(...)

start:DCTcore

end:DCTcore

Dr

Dc

Link between caller node and
CFG of its target function

start:quant

end:quant

26

Thread Control Dependence Tree

Thread control dependence edge
indicates the thread activation flow

BLKcore

C6

Y0 Y1 C

Dr0 Dc0

start

DCTcore

start

Q0 E0

BLK8x8

BLKcore

C2

Dsamp

C4

JPEGtop

Dr1 Dc1

start

DCTcore

start

Q1 E1

BLK8x8

Dr2 Dc2

start

DCTcore

start

Q2 E2

BLK8x8

Due to SESE property
of thread scopes,
each thread only has
ONE activator

27

TCT Compilation Flow (2)

3. Interprocedural data dependence analysis
– Convert ICFG to Interprocedural Dependence Flow

Graph (IDFG)
• Dependence flow graph (DFG): Generalization of SSA

(static single assignment) form integrating data flow and
control flow

– IDFG captures side effects on globals and argument
pointer dereferences during function calls

– Data dependence extraction of data structures (i.e.
arrays) and pointer dereferences
• Modification to data structures modeled as combination of

read-and-write operations
• Flow-insensitive context-sensitive pointer alias analysis

(currently handles single-level pointers only)

28

Interprocedural Data Dependence Analysis

Dependence flow graph (on variable DCy)

merge operator
switch operator

BLK8x8(&Y0[j],0,&DCy,&state)

BLK8x8(&Y0[j+8],0,&DCy,&state)

BLK8x8(&Y1[j],0,&DCy,&state)

BLK8x8(&Y1[j+8],0,&DCy,&state)

C6

L5

E5

E1

C2

L1

BLK8x8(&Y[j],0,&DCy,&state,0)
start

end

BLK8x8(&Cb[j>>1],1,&DCcb,&state,0)

JPEGtop BLK8x8

Interprocedural dependence flow links
to capture side effects during calls

*pcomp
*lastDC
*gstate

*lastDC
*gstate

*Cb
DCcb

*Y
DCy
state

DCy
state

state

state
DCcb

DCy = 0

29

TCT Compilation Flow (3)

4. Thread communication insertion
– Thread activation instructions

• Directly derived from thread control dependence tree
– Data transfer instructions

• Backward search on IDFG to locate the data modifiers in
different threads

• Entire data structure is bulk-transferred to reduce
communication setup overhead

• Loop optimization techniques (loop-invariance, loop-
privatization) applied to reduce communications

– Data synchronization instructions
• Inserted before the first use instruction in the thread

30

Thread Communication Insertion

[BLKcore.Y0.Dr]
DS:coef<64>
...// row DCT
DT:temp<64>=>[Dc]

[BLKcore.Y0.Dc]
DS:temp<64>
...// col DCT
DT:coef2<64>=>[Q]

[BLKcore.Y0]
CT:[Dr][Dc]

DCTcore

CT:[Q][E]
CopyBlock(pcomp,coef,…)
DT:coef<64>=>[Dr]
DCTcore(coef,coef2)

[BLKcore.Y0]

[BLKcore.Y0.Q]

[BLKcore.Y0.E]

BLK8x8

CT: control token (thread activation)
DT: data transfer
DS: data synchronization

thread activation flow
control flow
data flow

31

TCT Verification Tools (1)

• Behavioral verification on abtract processor
model
– Sequential single-thread execution

• Debug source code
• Generate program trace for profiling
• Debug TCT parser (compare against standard C compiler)

– Sequential execution on distributed memories
• Debug TCT compiler for inserted communication instructions

32

TCT Verification Tools (2)

• Trace scheduler for concurrent thread
execution modeling
– Schedules the concurrent thread execution

from the sequential execution program trace
– Estimates concurrent thread execution time
– Profile-based analysis of the critical path
– Graphical schedule viewer

33

Trace Schedule Viewer (1)
• Each column represent

thread execution
• Gray region : idle state
• Dark region : data transfer
• Different colors assigned to

each thread and function

Thread configuration:
- Color conversion : 3+1 threads
- Downsampling: 1 thread
- Core pipeline: 6 threads
(single pipeline)

average
parallelism

time
(cycles)

Data transfer

core pipelinecolor conversion

idle
state

C
opyB

lock

DrDc Q E

B
LK

core
D

sam
p

R
oot-thread

34

Trace Schedule Viewer (2)
Buffer depth (adjustable):
- short data buffer : 4 data units
- long data buffer : 0 data units
(directly written to receiver’s memory)

long data: more than 128 bytes

functional pipeline flow

data output sync data input sync

two-sided synchronization assures
correct concurrent behavior

35

Instruction-Level Schedule View

Color conversion threads :
Data parallelism on Y, Cb, Cr components

36

Scheduling Comparison (1)

Design 1:
Single core pipeline: 6 threads
Overall speedup: 4.42
Ave. parallelism at “core”: 2.93

Design 2:
3x core pipeline: 16 threads
Overall speedup: 5.54
Ave. parallelism at “core”: 5.38

37

Scheduling Comparison (2)

Design 2 (from previous page):
3x core pipeline: 16 threads
Overall speedup: 5.54
Ave. parallelism at “core”: 5.38

Design 3:
3x core pipeline: 19 threads
Overall speedup: 5.60
Ave. parallelism at “core”: 7.87

THREAD(E){
EncHuff(...);
THREAD(W){

WriteBits(...);
}}

38

Critical Path Analysis View

Profile-based critical path analysis reveals the
dependence cycle of variable “state”

EncHuf
f

WriteBits

E2
EncHuf

f
WriteBits

E2
EncHuf

f
WriteBits

E0
EncHuf

f
WriteBits

E0
EncHuf

f
WriteBits

E1
EncHuf

f
WriteBits

E1

state

39

TCT Verification Tools (3)

• Program visualization
– Control flow graph (CFG)
– Dependence flow graph (DFG)
– Call graph
– Thread slicing tree
– Thread interconnection graph

40

Control Flow Graph View

Thread activation

Data synchronization

Data transfer

41

Dependence Flow Graph View

Function BLK8x8 Function Quant

42

Thread Slicing Tree / Interconnection Graph

Thread slicing tree

Thread interconnection graph

43

Current Research Status

• Proof-of-concept MPSoC design on TCT
model
– Processor: simple RISC (originally designed)

• Communication module (buffers implemented on
local memory)

• Interconnect architecture
– Code generator back-end
– Instruction-level multiprocessor simulator
– VLSI implementation

44

MPSoC Development based on TCT Model

PE
MAIN

PROCESSING
UNIT

DATA
MEM

Comm Module

Control_Out
Data_Out

DestVectorControl_In
Data_In

Buffer Control LUT

ComHazardCom
Instruction

Multiprocessor-array

RISC Interface

AHB Slave
Interface

Comm.
Module

Data
Buffer

PE2

PE1PE0
Com

Com

Com

RAM0

RAM1

RAM2

RAM3

RAM5

RAM4

RAM7

RAM6

MCB
Controller

MCB

Interconnect:
Point to point;
complete network

PE３

Com

MCB

PE4

Com

RAM9

RAM8

RAM11

RAM10

PE5

Com

MCB

AHB Bus

• AMBA system bus + 32-bit RISC core (host processor)
• Symmetric distributed-memory multiprocessor array (6 processors + AHB interface)
• Interconnect architecture

– Full-crossbar structure with autonomous arbitration scheme
– Small & fast：1000gates/processor, 2ns@0.18um

• Comm. module:13K gates(including buffer controller)
– High-speed burst transfer: 4 bytes/cycle (setup: 1-6 cycles)
– Shared IO port architecture (1 read port & 1 write port / processor)

• TCT processor: 38K gates (including comm. module)
– 4-stage pipeline, 32 registers, Harvard

45

Future Works (1)

• Refinement of automatic thread communication insertion
algorithm
– Instruction rescheduling
– Thread merging (allocate multiple threads on each processor)
– Thread spliting, thread boundary adjustment

• TCT programming techniques
– Thread slicing strategies for different application classes
– TCT IPs

• Interconnect issues
– Direct connection, bus-based, router-based, multi-level switches
– Thread-to-processor mapping schemes

46

Future Works (2)

• Testing on real applications
– Video, audio, graphics, communications, networks, etc.

• MPSoC-specific problems
– Processor customization and dedicated hardware module

synthesis
– Communication interface and interconnect customization
– Develop MPSoC design methodology by combining existing

CAD tools

47

Summary

• Tightly-Coupled Thread (TCT) model is a totally new
framework for MPSoC designs where the system
designers can use sequential reference code in C to
directly generate a concurrent execution model.

• TCT model realizes complex combination of functional
pipelining, data parallelisms and task parallelisms.

• TCT model is largely orthogonal to conventional
parallelization compilers, VLIW compilers and parallel
programming languages: all these technologies can
utilize our TCT model to enhance their methodologies.

	VLSI System Design�Part VI : Advanced Topics�Oct.2006 - Feb.2007�“C-based Design Framework for Multiprocessor-SoC Synthesis
	Outline
	Multiprocessor System-on-Chip (1)
	Multiprocessor System-on-Chip (2)
	Challenges of Developing �Complex Embedded Systems
	Current Status of SoC Design
	Current System-Level �SoC Design Flow
	System-Level SoC Design Flow: �Current Problems and Future Solutions
	Next Generation MPSoC Architecture
	Next Generation System-Level �SoC Design Flow
	Next Generation System-Level �SoC Design Flow
	Tightly-Coupled Thread (TCT) Model
	TCT Programming Model (1)
	JPEG Encoder Example
	TCT Programming Model (2)
	Thread Nesting Through Function Calls
	TCT Programming Model (3)
	TCT Programming Model (4)
	TCT Concurrent Execution Model (1)
	TCT Concurrent Execution Model (2)
	TCT Concurrent Execution Model (3)
	TCT Concurrent Execution Model (4)
	TCT Concurrent Execution Model (5)
	TCT Compilation Flow (1)
	Interprocedural Control Flow Graph
	Thread Control Dependence Tree
	TCT Compilation Flow (2)
	Interprocedural Data Dependence Analysis
	TCT Compilation Flow (3)
	Thread Communication Insertion
	TCT Verification Tools (1)
	TCT Verification Tools (2)
	Trace Schedule Viewer (1)
	Trace Schedule Viewer (2)
	Instruction-Level Schedule View
	Scheduling Comparison (1)
	Scheduling Comparison (2)
	Critical Path Analysis View
	TCT Verification Tools (3)
	Control Flow Graph View
	Dependence Flow Graph View
	Thread Slicing Tree / Interconnection Graph
	Current Research Status
	MPSoC Development based on TCT Model
	Future Works (1)
	Future Works (2)
	Summary

