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Outline

 Background: Multiprocessor SoC designs

* Tightly-Coupled Thread (TCT) model

— TCT programming model : a seamless design
conversion from a sequential program (in C) to a
concurrent execution model

— TCT concurrent execution model
— TCT compilation flow
— TCT verification tools

e Current research status and future works



Multiprocessor System-on-Chip (1)

e Multiprocessor System-on-Chips (MPSoCs) are quickly
becoming the next trend in VLSI technology

— Programmable functional blocks: short design time, easy

verification, design changes after chip fab and during product life
cycle.

— Applications: mobile phones, printers, network routers, etc.

 Enabling technologies in MPSoC design
— System-level modeling (System-C, SpecC)
— HW/SW interface codesign
— Configurable processors
— Platform-based designs (CPU+busses+IPs)



Multiprocessor System-on-Chip (2)

« Challenges in MPSoC designs
— MPSoC design methodology: not yet established
— Heterogeneous processors, busses, memories

—> parallelizing compilers for homogeneous |
multiprocessors cannot be applied to MPSoC designs

— System partitioning / concurrent behavior modeling:
» System behavior modeling often start from references in C

» System partitioning and concurrent behavior modeling : can
be facilitated by SystemC or SpecC

e Crucial early design phase : large impact on the final SoC
design

* Time consuming manual process
- Difficult to evaluate many system partitioning configurations



Challenges of Developing
Complex Embedded Systems

Increasing functionality cost reduction
of electronics control HL — ' (design/production)
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High reliability
Real-time response

Ex: Automotive control system



Current Status of SoC Design

Increasing size and complexity (both SW and HW)
System environment
— Large number of concurrent events, real-time requirements
— Huge cost in system verification and debugging

System requirements

— Functionality, power, performance, development cost, production cost,
yield, reliability, portability, flexibility

Slow growth in design productivity

— Design methodologies highly dependent on CAD vendor tools

— Absence of CAD technologies for application-specific design needs
Design reuse, platform-based designs

— Fixed SoC architecture
— High overhead costs for IP qualification and IP integration

1L Il 1l

Higher design cost €======» Lower design quality



Current System-Level
SoC Design Flow

System specification

Environment, Functionality,

Performance, Power, Cost

System modeling

Spec. analysis, Environment
modeling, Algorithm design

System partitioning

Concurrency extraction,
Communication insertion

Design Flow

Architecture design

System verification

SW/HW binding,

Processor, Custom HW core,
Bus system, Memory system

~_

Debugging on HW prototype,
Simulate actual environment

Manual design refinement

-Low design productivity

-Bug-insertion risks

-High design change cost

-High design optimization
cost

= Insufficient cost model
at abstract design
phases

=Fundamental limitation
of manual designs
themselves

Huge debugging cost

= Insufficient system-
level environment
model



System-Level SoC Design Flow:
Current Problems and Future Solutions

e Manual process during design refinement
— Large description gaps between design levels: bottleneck in design productivity
— High risks of bug insertion: huge debugging costs
— High costs for design changes (spec. changes, bug-fix, performance tuning)
e Insufficient design methodology for highly-parallel multiprocessor SoC
architectures
— System parititioning, concurrency extraction = all manually designed
— Limited architecture exploration due to low design productivity
— Huge system verification cost (need to simulate actual system environment)
— Absence of effective Real-time OS for MPSoCs

e Insufficient system-level design optimization environment

— Algorithm optimization: implementation refinement of algorithms and data
structures

— System partitioning optimization: parallel task partitioning, task scheduling

— Architecture optimization: SW/HW partitioning, processor configuration, HW
synthesis, bus architecture, memory architecture

- System-level design automation tool chain for drastic increase in design
productivity

Establishing a robust system-level design optimization platform
Establishing a systematic design methodology for highly-parallel MPSoCs
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Next Generation MPSoC
Architecture

Optimized system-level partitioning

MPSoC Real-time OS

QoS-guaranteed MPSoC multitasking Highly-parallel scalable architecture

. Heterogeneous multiprocessors
- wireless LAN )
System-level power management customized HW cores
. T~
microphone speaker

camera

:>u display

Distribution of

concurrent touch panel
event handlers

— |

High bandwidth

sensor —|)

interconnect
[I:ﬁ actuator High speed interface

e Complex system environment:
— Large number of peripherals
— Highly concurrent under tight timing budget
e Highly-parallel scalable architecture:
— Heterogeneous multiprocessors and customized HW cores
— High bandwidth interconnect and high speed interface
e Fully optimized at system-level:
— SW/HW designs (algorithms, processors, cores, architectures, interconnects)

— System management (low-power, QoS guaranteed multitasking, concurrent event
distributions)



Next Generation System-Level
SoC Design Flow

System-level optimization platform
System specification -Algorithm design
Environment, Functionality, - Application-specific processor design
Performance, Power, Cost -Custom HW core design
. -System partitioning, concurrent modeling

System modelin : ’ )
= y g . MPSo0C architecture exploration
O Spec. analysis, Environment . : i
m e, AT e - Architecture evaluation model generation
c . v = Creation of high quality IPs
| System partitioning
X Concurrency extraction, System-level SoC synthesis platform
& Communication insertion -System-level design automation tool chain

Architecture design > D(as_tlc Increase In _deS|gr_1 pro_duct|V|ty

SW/EW bindim = Elimination of bug-insertion risks
91 -
Processor, Custom HW core, -> Easy deS|gn Changes
Bus system, Memory system
/ . .
System verification Ultra-fast system-level simulation platform
N Debugging on HW prototype, -Ultra-fast MPSoC simulation model
Simulate actual environment -System environment simulation model

=» Drastic reduction in verification costs
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Next Generation System-Level
SoC Design Flow

System-Level Parallel process modeling
I\/Iodeling Technology Architecture cost modeling

_ Algorithm optimization
System-Level Design | System partition optimization

Optimization Platform | Processor architecture optimization

MPSoC architecture optimization

System-Level System-Level
Simulation Technology Synthesis Technology
System environment simulation model System-level design automation tool chain

MPSoC real-time OS model
Ultra-fast MPSoC simulation model

11



Tightly-Coupled Thread (TCT) Model

« TCT model is a totally new framework which generates
a concurrent execution model of tightly-coupled threads
for functional blocks in MPSoCs.

— TCT programming model provides a seamless design
conversion from sequential C codes.

— TCT concurrent execution model implements a wide variety of
concurrent models such as pipelining, data parallelisms, task
parallelisms, as well as their combinations.

— TCT compiler automatically generates thread-level
communication and synchronization instructions via explicit
message passing to implement a fully distributed memory
system.

— TCT simulator schedules the sequential execution traces for
evaluating the concurrent execution time, communication
bandwidth, etc.

12



TCT Programming Model (1)

Drastically simple programming model
- Simply insert thread scope definitions in the C code
— Syntax:

THREAD(name) { statements }

7 N

thread scope header thread scope

— Thread scope header introduces a new thread labeled “name” in

the program

— Thread scope can have any compound statements in C, and
also other thread scopes (thread scopes can be nested)

13



JPEG Encoder Example

voi d JPEG op(FI LE *fp){
int i, ii, j;
short DCy=0, DCcb=0, DCcr=0; // DC val ues
buf state state; // for bitstreambuffer state
state.put_bits = 0; state.put_buffer = 0;
for(i = 0; i < imageSi zeYPaddi ng;){

for(ii =0; ii <8; ii ++){

thread scopes = ReadeLine(fp, i ++); // row 0: RGE->YChOr

X\,

ReadOneLine(fp, i ++); // row 1: RGB->YChCr
THREAD( Dsanp) { Downsanpl eCbCr();} // 4:1 on ChCr
}
" THREAD( BLKcore) { // call the core functions
: int nR= (i - 8 >= imageSizeY); // 2nd row is dummy
for(j = 0; J < imageSizeX, | += 16){
int nC=(j + 8 >= imgeSizeX); // 2nd col is dunmmy

s+ THREAD( YO) { // process Y components

¢ BLK8x8(&Y0[]],0, &DCy, &state, 0);
=7  BLK8x8(&YO[] +8], 0, &DCy, &st at e, nC) ; YO
)

THREAD( Y1) { // process Y conponents ,
% ©  BLK8x8(&Y1[j],0, &DCy, &state, nR) ; Y1

} 8 pixels

- BLK8x8( &Y1[j +8], 0, &DCy, &st at e, nC+nR) ;

5 )
5--THREAD( C) { // process Cb/Cr conponents Cb | Cr

BLK8x8( &Cb[ j >>1], 1, &DCcbh, &st at e, 0) ;

\d
-'.‘

BLK8x8( &Cr [j >>1], 1, &DCcr , &st at e, 0) ; color Components

Y
;..I}

H

14




TCT Programming Model (2)

o Compatibility to C standards :

— By disabling the thread scope header with a simple
preprocessor “#define THREAD(Nn)”, it can be
compiled with any standard C compiler to generate
the computational equivalent sequential executable.

e Thread allocations in function calls:

— Base-thread encloses the function body (all outermost
thread scopes are nested in the base-thread scope)

— On function calls, callee’s base-thread is replaced
with the caller thread (creating a thread nesting
structure through function calls)

15



Thread Nesting Through Function Calls

voi d DCTcore(int *coefln, int *coefQut){
int tenp[64];
Called from threads YO, Y1, C THREAD(Dr){...} // ROW: coefln ->tenp
¥ THREAD(Dc){...} // COL : tenp -> coefQut
s }
A | A

voi d BLK8x8( UCHAR *pconp, int conpl D, shofrt *DC, buf _state *gstate, int isDunmy)
{ :

I nt coef[ 64], coef 2[ 64];

short gcoef[64]; :

CopyBl ock( pconp, coef, conpl D, i sDummy) ; ¢/ / pconp => coef

*

DCTcore(coef, COef 2); minirnaaees /] coef => coef?2
THREAD( Q) {
Quant ( coef 2, qcoef, conpl D) ; /| coef2 => gcoef
i f(isDumry == 0)
Updat eDC( DC, qcoef); /'l t npDC=*DC, * DC=qcoef [ 0] ; gcoef [ 0] - =t npDC,
}
THREAD( E) { [l Huffman: qcoef -> streamoutput file

buf state |Istate; bit_buf buf;
EncHuf f (& st at e, &uf , gcoef, conpl D) ;
WiteBits(gstate, & state, &uf);

}
}




TCT Programming Model (3)

* Global thread slicing tree

— EXxpresses the thread scope nesting structure of the
entire application

— Function calls from different threads duplicate local
thread slicing trees

| Root

Dsamp BLKcore

duplicated threads



TCT Programming Model (4)

« Restrictions In thread scope usage
— Thread scopes must be a single-entry single-
exit (SESE) region
* no direct jumps into or out of thread scopes
« Acyclic control dependence between threads

— No recursive calls inside thread scopes
* To guarantee thread slicing tree structure

18



TCT Concurrent Execution Model (1)

state *YO0

DCy *Y1 DCchb *Ch DCcr *Cr
: v YO v Y1 : v C . v
«|| CopyBl ock CopyBl ock CopyBl ock CopyBIl ock «|| CopyBl ock = | CopyBl ock
1 coef coef coef coef 1 coef r coef
A 4 A 4 A 4 A 4 A 4 A 4
. Dry Dro] Dr, Dr,
: tempy tenpy tenpy tenpy
: [Dcox (Dco} [Dclx (Dcl]
: coef 2 ’ coef 2 coef 2 coef 2
v Qq v Qg v Q v O
Quant Quant Quant Quant
Updat eDC DSy Updat eDC DSy Updat eDC Dy Updat eDC
DCy |
gcoef gcoef gcoef gcoef gcoef DCeb gcoef DCer
A 4 EO A 4 EO \ 4 El VvV El A 4 E2 A 4 E2
EncHuf f EncHuf f EncHuf f EncHuf f EncHuf f EncHuf f
state state state state state
------ »
state

e Concurrent model implied in JPEG example :
— 3 functional pipelines executing in parallel

- Combination of functional pipelining and task parallelism with
complex data flow

19



TCT Concurrent Execution Model (2)

 Physical allocation of threads
— Each thread is statically allocated to each processor
— Each processor executes its own code inside the thread scope

 Thread communication model and memory model
— External data transferred via message passing

— Buffered communication channel
» Finite buffer depth allocated at receiver side

— Distributed memory model : no remote memory access

CM : communication module interconnect
LM : local memory

P . processor I I I

CM CM CM

LM P LM P LM P

thread A thread B thread C



TCT Concurrent Execution Model (3)

 Combining data-driven and program-driven principles
— Program-driven (statically scheduled) thread execution
— Data-driven thread interaction

« Differences between other hybrid data flow machines

— Conventional notion of “threads” :
* Non-blocking (all external data available before thread activation)
o Compiler-driven thread partitioning (thread size tend to be small)
* Many dynamically scheduled threads to fill the execution pipeline
— Tightly-coupled threads :
* Blocking (thread activation is independent of data availability)
—> thread interaction through fine-grain data synchronization
* Designer-driven thread partitioning (thread can be of any size)
* Very simple execution model
—> allows easy processor customization

21



TCT Concurrent Execution Model (4)

 Thread activation and deactivation
— Activated by control dependent thread based on control flow
(“root-thread” processor activates by itself)
— Deactivates itself upon completion of thread execution
— No signaling of thread termination (not a fork-join model)

thread activation signal systemreset [ |NIT |
e ' ]
a SLEEP
\ thread activation
LM P LM P
g P L ) execute
thread A thread B thread
thread B is activated by its U
control dependent thread A utter status
update END |—




TCT Concurrent Execution Model (5)

« Data output synchronization:
— Data transfer instruction sends data directly to the receiver buffer
— If buffer is full, processor simply stalls until the buffer becomes

non-full again.
« Data input synchronization:

— Availability of external data checked by explicit data
synchronization instruction before the first use of the data.

— Processor simply stalls until data becomes available.

- :
/gtvl
LM || P

-

LMj(— P

thread A

~

thread B

«---4¢— data transfer
«4— data synchronization
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TCT Compilation Flow (1)

1. Front end
— General C parsing + thread scope parsing
— File linkage

2. Internal program representation

— Interprocedural control flow graph (ICFG)
 CFG for each function (nodes colored with thread-1Ds)
 Each caller node in CFGs linked to target function’s CFG

— Global thread slicing tree
 Thread instantiation and duplication

— Thread control dependence tree
« Similar to global thread slicing tree
» Expresses the distributed thread activation flow

24



Interprocedural Control Flow Graph

......................... i

NR=(i - 8>=i mageSi zeY)
| =0

~

| C6: j <i mageSi zeX |

| nC=(j +8>=i mageSi zeX) |

v

| BLK8x8(&YO[] ], 0, &DCy, &st at €) |<-

| start: BLK8x8 |

| CopyBl ock(. . .) |

................... +
@ Quant (...) wli

| BLK8x8( &YO[ j +8] , 0, &DCy, &st at e)

| BLK8x8( &Y1[]j +8],

Lo, Y e
| BLK8x8( &Y1[j], 0, &DCy, &st at ) |A‘

0, &DCy, &st at e) ’!

EncHuff(...) |:
WiteBits(...) |:
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| end: BLK8x8 |

CFG of its target function

|DCTc0re(...) |<__>

| start: DCTcore |

| end: DCTcor e |

R }\

| start: quant |

i

i

| end: quant

Link between caller node and
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Thread Control Dependence Tree

JPEG op
A~ PR
Thread control dependence edge [Ds;mp] [BLK‘éore]

=%,
=

indicates the thread activation flow.. /
.................

Due to SESE property : ;
of thread scopes, L S|
each thread only has

ONE activator BLK8x8 BLK8X8 BLK8x8
(Q,) Q. 0,
DCTcor e DCTcor e DCTcor e
Drn DCn DI’1 DC1 Dr’ DC9




TCT Compilation Flow (2)

3. Interprocedural data dependence analysis

— Convert ICFG to Interprocedural Dependence Flow

Graph (IDFG)
 Dependence flow graph (DFG): Generalization of SSA
(static single assignment) form integrating data flow and

control flow
— IDFG captures side effects on globals and argument
pointer dereferences during function calls

— Data dependence extraction of data structures (i.e.
arrays) and pointer dereferences

* Modification to data structures modeled as combination of
read-and-write operations
* Flow-insensitive context-sensitive pointer alias analysis

(currently handles single-level pointers only)

27



Interprocedural Data Dependence Analysis

JPEGtop YD
DY >
Gtate>

| BLK8x8(&Y[j], 0, &DCy, &state, 0) |
)

[ BLkexa(&vo[ | ] ' @0 ssthatk) |

| BLK8X8( &Cb[ j >>1] ,"1, &DCcb, &st at e, Q)1
|BLK8x8(&Y0[j-8 ,0,&D0y) &dt te)| SCeT
{ore
|BLK8x8(&Y1[j] ,@Doy)é&st 4t )

Interprocedural dependence flow links
—{ BLKex8( &Y1[ ] +8] \Q. DY) fsfat o)] to capture side effects during calls

é : & switch operator
% @l © merge operator

Dependence flow graph (on variable DCy)

28




TCT Compilation Flow (3)

4. Thread communication insertion

— Thread activation instructions
» Directly derived from thread control dependence tree

— Data transfer instructions

« Backward search on IDFG to locate the data modifiers Iin
different threads

« Entire data structure is bulk-transferred to reduce
communication setup overhead

 Loop optimization techniques (loop-invariance, loop-
privatization) applied to reduce communications

— Data synchronization instructions
 Inserted before the first use instruction in the thread

29



Thread Communication Insertion

BLK8x8

([ BLKcor e. YO]

LCT[Q[E

Py
L7}

DT: coef <64>=>[ Dr ]

g

CopyBl ock( pconp, coef, .)

AN
‘[ BLKcore. YO. ()
V.,

T[BLKcore. YO. F] )

s
e
I
) IS
I
°
5
°
e
*
5

CT: control token (thread activation)

DT: data transfer
DS: data synchronization

DCTcor e

([ BLKcor e. YO]

CT:[Dr][Dc] -

-

A\
<

([ BLKcor e. YO. Dr]

9
J

hd »
s

5 .
>

DS: coef <64>
o

row DCT

-

DT: t enp<64>=>[ Dc] &

N,

r3

[ BiKcore. YO. De]

< )

N

Dg: t enp<64>
...I1 col
« DT: coef 2<64>=>[ (

DCT

J

thread activation flow
control flow
data flow
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TCT Verification Tools (1)

« Behavioral verification on abtract processor
model
— Sequential single-thread execution
* Debug source code

» Generate program trace for profiling
 Debug TCT parser (compare against standard C compiler)

— Sequential execution on distributed memories
 Debug TCT compiler for inserted communication instructions

31



TCT Verification Tools (2)

e Trace scheduler for concurrent thread
execution modeling

— Schedules the concurrent thread execution
from the sequential execution program trace

— Estimates concurrent thread execution time
— Profile-based analysis of the critical path
— Graphical schedule viewer

32



Trace Schedule Viewer (1)

color conversion core pipeline
A A e Each column represent

s \ N\ :
4.7075) 295060 i L thread execution
(8.3475) 293566 I O w! o Dribc QIE ¢ Gray region : idle state
(8.0115) 294072 2 EIxR e Dark region : data transfer
(4.7787) 294325 L — PErs . .
(6.9245) 294578 = SIS « Different colors assigned to
(7.3202) 294831 L p= 1
(7 2032235084 Q each thread and function
(6.5810) 295337 | =
(3.7787) 295530
(5.9130) 295843
(7.3439) 296096
(7.4111) 296349 . .
(6.7668) 296602 Thread conflguratlon:
YA R — - Color conversion : 3+1 threads
(1515 2o1se - Downsampling: 1 thread
:jgggg; 32;?23 - Core pipeline: 6 threads
(4:5020) 298373 — (Single pip6|ine)
(7.2609) 298626
(7.3202) 298879 |

parallelism (cycles)  state 23



Trace Schedule Viewer (2)

Buffer depth (adjustable):

- short data buffer : 4 data units

- long data buffer : O data units
(directly written to receiver’'s memory)

- long data: more than 128 bytes

0 two-sided synchronization assures
correct concurrent behavior

functional pipeline flow 34



Instruction-Level Schedule View

288001 ( 5) [+8L3.L1GL0O]$740 := $739 & 255
288002 ( 5) [+8L3.L18L0O]$741 := (unsigned
[+EL3.L1GLO]r = $741
288003 ( 4) g 0]D 0.RGB
288004 ( 12) [+8L3.L18L0O]$742 := rgb >> B [+UL3.L16LO.RGB_Y]DS : {ATl:r} [+GL3.L10LO.RGB_Cb]DS : {ATl:r| [+CL3.L
[+0L3.L1GLO.RGB_Y]$747 := (int [+(8L3.L1@LO.RGB_Cb]$760 := (in| [+CL3.L
288005( 7) [+8L3.L1GL0O]$743 := $742 & 255/ [+(L3.L1ELO.RGB Y]5748 := $747 [+(L3.L1@LO.RGB Cb]$761 := $76 [+(L3.L
288006 ( 9) [+0L3.L1GLO]$744 := (unsigned | [+@L3.L16LO.RGB_Y]$749 := r2y[ [+CL3.L16LO.RGB_Cb]§762 := r2y [+EL3.L
[+@L3.L1GELO]g = $744
288007 ( 4) d 0]D g 0.RGB
288008 ( 10) [+8L3.L1EL0O]$745 := rgb & 255 [+8L3.L1EL0O.RGB_Y]DS {AT2:g} [+G¢L3.L12LO.RGB_Cb]DsS : {AT2:g| [+EL3.L
[+0L3.L1ELO.RGB Y]$750 := (int [+(GL3.L1GLO.RGB Cb]$763 := (in| [+GL3.L
288009 ( 8) [+@L3.L1ELO]$746 := (unsigned [+@L3.L1@LO.RGB_¥]$751 := $750 [+@L3.L1@L0.RGB_pb]$764 = $76| [+EL3.L
[+@L3.L1GLO]b = $§746
288010( 7) 3 01D B 0.RGB [+8L3.L168LO.RGB Y]§752 := r2y[ [+GL3.L1@LO.RGB Cb]5765 := r2y| [+GL3.L
288011 ( 11) [+@L3.L1GELO]$786 := pY[]] [+0L3.L1GLO.RGB_Y]DS {AT4: ## [+0L3.L10LO.RGB_Cb]DS : {AT4:# [+CL3.L
[+@L3.L1ELO.RGB Y]$753 := $749 [+(@L3.L1GALO.RGB Cb]$766 := $76/ [+GL3.L
288012 ( 11) [+8L3.L1EL0O.RGB_Y]DS {AT3:b} [+GEL3.L12LO.RGB_Cb]DS : {AT3:b| [+EL3.L
[+¢L3.L16LO.RGB_Y]$754 := (int [+(L3.L16LO.RGB_Cb]$§767 := (in| [+EL3.L
288013( 9) [+@L3.L1@LO.RGB_X]$755 = $754 [+@L3.L1@L0.RGB_Cb]$768 = $76| [+EL3.L
288014 ( 8) [+@L3.L1@LO.RGB_X]$756 = r2y|[ [+@L3.L1@L0.RGB_Cb]$769 = r2y| [+EL3.L
288015( 86) [+@L3.L1ELO.RGB Y]$757 := $753 [+(@L3.L1GALO.RGB Cb]$770 := $76| [+GL3.L
288016 ( 6) [+0L3.L1ELO.RGB Y]$758 := $757 [+(L3.L1ALO.RGB Cb]$771 := $77| [+G8L3.L
288017( 9) [+¢L3.1L10LO.RGB_Y]$759 := (uns [+(L3.L16LO.RGB_Cb]§772 := (un| [+E8L3.L
[+@L3.L1GLO.RGB Y]yy = $759 [+E@L3.L1ELO.RGB Cbh]lbb = $772 [+EL3.L
288018( 6) L1@LO.RGB Y]DT vy =>(L L1ELO.RGE Cb]DT bb =>( L
288019 ( 8) [+¢L3.L1CLO]DS {ATB:yy} [+UL3.L1GLO.RGB_Y]EndThread [+:L3.L14LO.RGB_Cb]EndThread [+¢L3. L
[+8L3.L1G8LO]$786 = yy
288020( 4) [+@L3.L1ELO]$787 := ppCh[]]

Color conversion threads :
Data parallelism on Y, Cb, Cr components

35



Scheduling Comparison (1)

1013700 = 1011750

1030950 - 1029000

1048200 = 1046250

1065450 ] 1063500

1082700 - 1080750

1099950 = 1098000

1117200 B 1115250 ]
1134450 i 1132500 = B
1151700 = 1149750 =
1168950 | 1167000 =
1186200 ] 1184250 =
1203450 — 1201500 -
1220700 — 1218750 Ewm =

1237950 . 1236000

1255200 — 1253250 _é =
1272450 — 1270500

1289700 - 1287750

1306950 —_— 1305000

1324200 — 1322250

1341450 — 1339500 = =
1358700 B 1356750 ==

1375950 | 1374000 =

1393200 = 1391250 ‘% =

1410450 1408500 =

1427700 | 1425750 EeE—l=
1444950 | 1443000 == =
1462200 ] 1460250 — =
1479450 T 1477500 _g ] I
1496700 1494750 T T T T[]
Design 1: Design 2:

Single core pipeline: 6 threads
Overall speedup: 4.42
Ave. parallelism at “core”: 2.93

3x core pipeline: 16 threads
Overall speedup: 5.54
Ave. parallelism at “core”: 5.38



Schec

902709

907010

911311

915612

919913

924214

928515

932816

ritt

937117

941418

945719

950020

954321

958622

962923

967224

971525

975826

980127

B

984428

988729

993030

997331

O 0 T N IR AANE

1001632

1005933

1010234

1014535

1018836

1023137

1027438

1031739

1036040

Lt SRR iR S

1040341

Design 2 (from previous page):

3x core pipeline: 16 threads

Overall speedup: 5.54
Ave. parallelism at “core”. 5.38

uling Comparison (2

N

902709 | ™ L |l ||| L |
907010 — = B =
911311 = B —— H I
915612 | | O B == =l I
919913 — — B O | I
924214 — e = [ I
928515 |_ =R = = | I
932816 — = B I
937117 — — == =1 =
941418 | BEEEE = = =
945719 | | — = E ]
950020 H BEEEREEEEE H:
954321 — I = —— =H F=
958622 | | ==
962923 H = = I
967224 — —= B —= ] I
971525 | | EREEEE= Enn I
9575826 [ H B ] I
980127 = ] == B I
984428 — e = I
988729 [ H B e H B I
993030 — Ep=EE = I
997331 || - — I
1001632

1005933 [

1010234

1014535 [ THREAD( E) {

1018836 — .
1018636 = EncHuff (...);
1027438

1031739 & THREAD( W {
1036040 | i i .
1035049 WiteBits(...);

Design 3:

3x core pipeline: 19 threads
Overall speedup: 5.60
Ave. parallelism at “core”. 7.87
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Critical Path Analysis View
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Profile-based critical path analysis reveals the
: dependence cycle of variable “state”

2
|EncHuf|

WIteBItS

\_ state
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TCT Verification Tools (3)

* Program visualization
— Control flow graph (CFG)
— Dependence flow graph (DFG)
— Call graph
— Thread slicing tree
— Thread interconnection graph
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Control Flow Graph View

|[+] start

b

BLEBxEB |

[+] cT

[+] DT compID =>(E:compID) (Q:compID)

[+] DT isDummy =>{Q:isDummy)

[+1 ALIAS (DC ALS 6) := DC ALS 6 <ID:0>

[+] DT : DC =>(Q:(*)DC(DC BALS 6))

[+] ## ALIAS (gstate ALS 7) := gstate ALS 7 <ID:0>
[+] DT gstate =>(E.W: (*)gstate(gstate ALS 7))
.{#;L.Iﬂl...1:fJ1mHIIﬁ.F--LE.Ii.:jﬁliqmllw-LQ.1:f14ﬁJIIQ

start: BLEBx8 => (Q:0)}(E:0)})(E.W:0)=

void BLEBx8 (UCHRAR * pc

{

declared
declared

[+1 i
[+1 3j
[+] coef<64:-

declared

Thread activation

[+] coef2<6d4>
[+]1 quoef<6d:

b

| [+1 CopyBlock(pcomp, coef, compID, isDummy) |

declared
declared

[+J ALIAS (datagtr ALS 20 = *coef<6d> <ID:0
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Ler

IIlIIlIllIIlIIIllIIIIIIIIIIIIIbIIlIlIIIIIIIIIIIIIIIIIIIIII.
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[+1 coefIn_HLS_l = coef <ID: 0>
[+] DCTcore(coef, coef2)

Jump

[¢] StartThread
[¢] Ds {AT3: flowID}

ep(0)

Data transfer

int i
int j;
int coef[64];
int coef2[64];
JCOEF gooef[64]
CopyBlock (pcomp,
DCTecore (coef, coet
THREARD (¢ ) {
Quant (coef?2, ¢
if (! isDummy)
UpdateDC (L
}
THREARD(E} {
buf state 1st:z
bit buf buf;
EncHuff((&1lst:z
THREAD (W) {
WriteBitsT
}

[¢] Quant(coefﬁ, qooef, compID)

= [¢] Ds {AT1: isDummy} sg—

Data synchronization

"[U]"S'IUD':I'?'="'!"i'§Df1'rrhﬁir".
[Q] DS {AT2: (*)DC, AT6
k
[ [2] branch $1004
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Dependence Flow Graph View
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Thread Slicing Tree / Interconnection Graph
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Current Research Status

* Proof-of-concept MPSoC design on TCT
model

— Processor: simple RISC (originally designed)

« Communication module (buffers implemented on
local memory)

 Interconnect architecture
— Code generator back-end
— Instruction-level multiprocessor simulator
— VLSI implementation
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MPSoC Development based on TCT Model

32-bit data 7rb\:/deshnation vector Z+Z bit contro

AHB Bus
TCT MPSoC ! :'I:
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|| Interface Proc. |! X . endma T o*
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‘ UART ‘ ‘ SP1 ‘ ‘ GPIO ‘ ‘ 12C ‘ | | | | Al B E E 4 Control_out
‘ RAMS ‘ ‘ RAMT7 ‘ ‘ RAM9 ‘ ‘ RAM1L ‘ Multiprocessor-array - Comm Module —># Data_Out

e AMBA system bus + 32-bit RISC core (host processor)
e Symmetric distributed-memory multiprocessor array (6 processors + AHB interface)
e Interconnect architecture
— Full-crossbar structure with autonomous arbitration scheme
— Small & fast:1000gates/processor, 2ns@0.18um
e Comm. module:13K gates(including buffer controller)
— High-speed burst transfer: 4 bytes/cycle (setup: 1-6 cycles)
— Shared 10 port architecture (1 read port & 1 write port / processor)
e TCT processor: 38K gates (including comm. module)
— 4-stage pipeline, 32 registers, Harvard
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Future Works (1)

e Refinement of automatic thread communication insertion

algorithm
— Instruction rescheduling
— Thread merging (allocate multiple threads on each processor)

— Thread spliting, thread boundary adjustment
o TCT programming techniques
— Thread slicing strategies for different application classes
— TCT IPs
e Interconnect issues
— Direct connection, bus-based, router-based, multi-level switches
— Thread-to-processor mapping schemes
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Future Works (2)

e Testing on real applications
— Video, audio, graphics, communications, networks, etc.

« MPSo0C-specific problems

— Processor customization and dedicated hardware module
synthesis

— Communication interface and interconnect customization

— Develop MPSoC design methodology by combining existing
CAD tools
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Summary

* Tightly-Coupled Thread (TCT) model is a totally new
framework for MPSoC designs where the system
designers can use sequential reference code in C to
directly generate a concurrent execution model.

« TCT model realizes complex combination of functional
pipelining, data parallelisms and task parallelisms.

« TCT model is largely orthogonal to conventional
parallelization compilers, VLIW compilers and parallel
programming languages: all these technologies can
utilize our TCT model to enhance their methodologies.
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