VLSI System Design
Part V : High-Level Synthesis(3)

Oct.2006 - Feb.2007

Lecturer : Tsuyoshi Isshiki

Dept. Communications and Integrated Systems,
Tokyo Institute of Technology

http://www.vlsi.ss.titech.ac.jp/~isshiki/VLSISystemDesign/top.html

mailto:isshiki@vlsi.ss.titech.ac.jp

High-Level Synthesis Flow

A) Design capture (HDLs, C/C++, signal-flow graph,
etc)

B) Compilation to internal representation
 Data-flow graph (DFG)
 Control-flow graph (CFG)
e Control-data-flow graph (CDFG)

C) Resource allocation
« Specify available functional units

D) Operation scheduling
e Assign each operation to control steps

E) Resource binding

e Assign each data to registers
« Assign each operation to functional units

Resource Binding

Datapath architecture construction
—unctional units

Registers

nterconnect (busses, multiplexers)
Memory

Resource binding is the process of
allocating each resource instances to
computational elements (operations,
data)

NN X X

Data Lifetime (1)

Recall data lifetime within basic
blocks:
— Starts after the data assignment
operation
— Ends after the last operation using
the data
Used for constructing data-flow
graph for operation scheduling.

Actually not sufficient for register
binding because data can be alive
across basic block boundaries.

w[1]

w[0]

w[2] = w[1];

w[2] |

4

w[1] = wl[O];

w[1]

x = Getlnput();

X

u[1] = b[1] * w[i];

u[1]

u[2] = b[2] * w[2];

u[2]

u[3] = u[l] + u[2];

, ul3]

Y.\

w[0] = x + u[3];

,W[O]

N

v[0] = a[0] * w[0];

V(O]

V[1] = a[1] * w[1];

V[1]

v[2] = a[2] * w[2];

A

v[2]

v[3] = v[1] + v[2];

V[3]

V.Y

y = Vv[0] + V[3];

) 4 y

PutOutput(y) ;

Data Lifetime (2) S

Where does the input variables in
the basic block come from??

x = Getlnput() is the actual input condO = (enable != 0);
node to the system.

What about (w[2] = w[1]) and

= o, Wil
(w(1] = w[o]) ?* ot M
w[1] w[2]
w[0] = 0; w[1] = 0; w[2] = 0;
Wh"flv([g]nibvl\f’[ll]:; X b1\/ /b2 | al\/ \/a2
w[1] = w[O]; u[1] v[1]\ /v[2]
x = Getlnput();
U[1] = b[1] * W{1]; D
u[2] = b[2] * w[2]: ﬁ> v[3]

u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[O[;
v[1] = a[1] * w[1]; \/a0
v[2] = a[2] * w[2];
Vv[3] = v[1] + v[2];
y = V[0] + V[3];
PutOutput(y) ;

LI}
o

0.0 0

- : wio] fw1][w(2]

Data Lifetime (3) o
""" 24
For each implicitinputs | 1

in the basic-block

(variables without source condO = (enable != 0);

within basic block), :
traverse the control-flow N
graph backwards until Wi gt
the basic-block which . OR(
generates the data is LHE w[2]
reached. :
When join-node is : al az
reached, traversal must i V[]\ /vI2]
fork to each of the join : @)
sources. Vi3]
>
\/a0
: Vo /
I
: y
ERC
........ W,

......
LI}
o

0.0 2o
Data Lifetime (4) []f;i%gv ®

For the basic-block

A LLs
*
0
.
.
.
.
.
.
.
*
.

which gene_rates the condo = ('enable = 0)
concerned input data, A
add output node for that : :
data (if the output node : W],
does not exist) : O |
w[2]
'_ al a2
' V[1]\ /vI2]
@
V[3]
PD
HOHE
: y
: O
........ . 4

Data Lifetime After Scheduling (1)

O Scheduling of input/output nodes

» All input nodes whose data lifetimes
cross the basic-block boundary need
to be scheduled at time t = 0.

» All output nodes whose data lifetimes
cross the basic-block boundary need
to be scheduled attime t=T__ — 1.

» 10 nodes whose data lifetimes do not
cross the basic-block boundaries is not
restricted here (but actually is
dependent on the external devices
connected to these nodes)

Interval Graph for Data Lifetime

I(\/J) = [lmin(Vj) 1 Imax (\/J)] lifetime
of output data of v
Imin(Vj) = G(\/J) + 5(\/1)

eV = Max{ov) + &) — 1 |
(v;,v) € E}

0.1 2 3 45 6 7.8
sgV

L

> 10 b

Register Binding Problem

O Problem input :
v’ List of data lifetimes L = {I(v) | v € V}
v’ SetofregistersR={r.|i=0,1,...,|R -1}
O Register binding A is a mapping of operations v € V
to the register set R
A: V2R

such that all the output data lifetimes of the
operations mapped to a register does not overlap

Imin(Vj) > Irnax(Vi) or Imax(VJ) < Imin(Vi)
for all A(vj)) = A(v))
O Objective .

v" Minimize the number of registers required |R| to hold all
output variables

Left-Edge Algorithm (1)

1 L : Operation list V sorted in the increasing order of [. (V)
2. =-1

3. L’ = ¢ (temporal list of operations)

4

Select the first element vin V which satisfies | ; (v) > k
. If such v does not exist, go to 8

5 Remove vfrom L and add to L’

6. K= (V)

1. Goto4

8 Add register r and assign all operations in L’
9 If L is not empty, go to 2. Otherwise END

0,1.2,3,4.5,6,7.8

Sorted operation list : L

Left-Edge Algorithm (2)

L : Operation list V sorted in the increasing order of [. (V)
=-1
L’ = ¢ (temporal list of operations)

Select the first element vin V which satisfies | ; (v) > k
. If such v does not exist, go to 8

Remove vfrom L and add to L’

K= (V)

Goto4

Add register r and assign all operations in L’

If L is not empty, go to 2. Otherwise END
0.1.2.3.4.5.6.7.8, 0.1.2,3.4.5,6.7.8,

VOE

Left-Edge Algorithm (3)

L : Operation list V sorted in the increasing order of [. (V)
k=-1
L’ = ¢ (temporal list of operations)

Select the first element vin V which satisfies | ; (v) > k
. If such v does not exist, go to 8

Remove vfrom L and add to L’

K= (V)

Goto4

Add register r and assign all operations in L’
If L is not empty, go to 2. Otherwise END

N_ Vq I Vs I Vg I Vlli
Vg ——
V8_

Left-Edge Algorithm (4)

L : Operation list V sorted in the increasing order of [. (V)
k=-1
L’ = ¢ (temporal list of operations)

Select the first element vin V which satisfies | ; (v) > k
. If such v does not exist, go to 8

Remove vfrom L and add to L’

K= (V)

Goto 4

Add register r and assign all operations in L’

If L is not empty, go to 2. Otherwise END

e

H H H
s,

Left-Edge Algorithm (5)

L : Operation list V sorted in the increasing order of [. (V)
k=-1
L’ = ¢ (temporal list of operations)

Select the first element vin V which satisfies |
. If such v does not exist, go to 8

Remove vfrom L and add to L’

K= (V)

Goto4

Add register r and assign all operations in L’
If L is not empty, go to 2. Otherwise END

V) > k

min

V (e ————— N N
° Vot
V7V5—
| V g
Vigmm=—
Vyg—

Left-Edge Algorithm (5)

L : Operation list V sorted in the increasing order of [. (V)

k=-1

L’ = ¢ (temporal list of operations)

Select the first element vin V which satisfies |
. If such v does not exist, go to 8

Remove vfrom L and add to L’

K= (V)

Goto4

Add register r and assign all operations in L’

If L is not empty, go to 2. Otherwise END

0,1.2.3.4.5.6.7.8, 0,1.2.3.4.5.6.7.8,

2 i ;

(v) > k

min

V y —
V H H
7 V5_

Properties of Left-Edge Algorithm

O Eventhough it is a greedy algorithm, left-edge
algorithm produces an optimal solution in terms
of number of registers

Minimum number of registers required is the maximum
number of data lifetimes overlapping within the
scheduling time set T

It can be shown that left-edge algorithm always
produces a binding solution with the maximum number
overlapping data lifetimes

O Limitations of left-edge algorithm

« Can only handle interval graph

 Cannot take into account factors other than the number
of registers into the problem formulation. (number of
registers is not the only hardware cost)

Task-To-Agent Problem (1)

O Generalization of resource binding problem
 Task : operation, data, data transfer
 Agent : functional unit, register, bus

O Task compatibility and task conflict

 Two tasks are compatible if they can be assigned to
the same agent.

 Otherwise, they are in conflict.

O Task-to-agent problem is to assign tasks to
agents such the number of agents are minimized
where all tasks assigned to an agent are
compatible.

Task-To-Agent Problem (2)

O Compatibility graph G, (V,, E,)
 Vertices denote tasks

« Presence of an edge (v, V) € E, indicates that vertices
v, and v, are compatible

O Conflict graph G;(V;, E)
« Vertices denote tasks
« Presence of an edge (v, V) € Eindicates that v; and v,
are in conflict
O Conflict graph G; (V;, E) Is a complement graph
of compatibility graph G, (V,, E))
* V=V, (same vertex set)

« G (V,, B E): complete graph (there are edges to
every pair of vertices)

Compatibility Graph vs Conflict Graph
©

RIRSEL
I ESAY

7 S
6

Compatibility Graph Conflict Graph

OO0

OO0

Graph Coloring Problem

Problem input : conflict graph G;(V;, E)

Assign a color to each vertex so that adjacent
vertex pair each has a different color, and the
total number of color is minimized (color -
agent)

General graph coloring problem is NP-complete

Special instances of graphs can be optimally
colored
- Conflict graph constructed from interval graph

- Left-edge algorithm gives the optimal graph coloring
solution in polynomial time

- In general, task-to-agent problem may not be from an
Interval graph, in which case left-edge algorithm cannot
be applied

Greedy Graph Coloring Algorithm

O Basic greedy algorithm :

A) Sort Vin some order (such as vertex degree : number of
edges connected to that vertex)

B) For each vertex v € V (in the sorted order), assign the
color with the minimum index which is not assigned to
any of the vertices adjacent to v.

11 sorted by colorO0 color1 color2 color3 color4
vertex degree
0 @) 0
\ 2 () 0 2
9 @) 0 2 9
16 0 2 9.1
N 3@ 0 |2 913
4 @ 0 2 913 4
5@ | 0 |2 9,135 4
6 @3 0 2 9,1|3,5 4.6
7@ 0 2 9,1]3,5,7 4,6
8 0 |28 [91|357 |46
vertex degree %(])_(3) 0 2,8 9,113,5,7,10 4,6
Conflict Graph (2) 0 2,8,11| 9,1 | 3,5,7,10 | 4,6

Cligue Partitioning Algorithm (1)

O Problem input : compatible graph G, (V,, E,)
O Partition G,(V,, E)) into cliques so that the total

number of cligues is minimized (cligue = agent)

» Cligue : complete subgraph (there is an edge for all
vertex pairs in the subgraph - all vertices in a clique
are compatible)

O General clique partitioning problem is NP-
complete

cliques

Cligue Partitioning Algorithm (2)

O Super-vertex : group of vertex which form a
cligue (vertex is also a super-vertex)

O If two edges (v;, vi) and (v, v,) exist, then vertex
V. Is the common neighbor for v, and v,

O Algorithm :

A) Choose an edge (v, v)) € E, with the most common

neighbors and merge v. and V; Into a super-vertex v, ;

(Remove (v, v)) from E,)

B) Add a set of edges {(v; ;, Vi) | v : common neighbor of
viand v} to E;

Considering Interconnect Cost
In Register Binding

Assume that operations with the same type is assigned to the
same hardware (because functional unit binding not done)

Interconnect cost = # (input op-types) + # (output op-types)
Resource vector : each bit denotes whether the corresponding

Merge interconnect cost : bit-wise OR on the input/output

Use interconnect cost when there are several merge candidates

O Interconnect cost (simple estimate) - sum of input and
output arcs to the register
>
>
>
functional unit is connected (1) or not connected (0)
>
resource vectors and counting 1s in the vectors.
>
resource vector
(ADD, MULT)
MULT| | ADD MULT | | ADD
[01410] [10[10] \ /2
1 2 :> 1,2 [11:10]
1 \
ADD | [ADD ADD |input output

part

part

MULT | | ADD
[01}10] [1001]
1 3
\ 4 \ 4
ADD | |[MULT

MULT

ADD

N

—

/

1,3

\2

[11:11]

ADD

MULT

Cligue Partitioning Algorithm (3)

optimal vertex 14 0 0
merge L ® @1 ® B1
considering 10
Interconnect C K C
9 3
3 5 °3 5)°
4
84 %\%2@ S 8114 =4
#common 7 Ffs resource vector 7@ Fis
neighbors G (ADD, MULT) G
\ 6) 6
ABCDEFGHI J KL /. |[ABCDEFGHI JK
f oo\ - o - - - o | A O¥f00: 01y [« - T T T A 0)[00: 01
- *---33-3034]| B(1)[0010] - % . - . 22-202]| B (1)[00:10]
- - ¥ - - -3-2-23| C(2[00:01] [[--*---2.1-1]| C(2)[00:01]
- - -*-4464145]| D(3)[01:10] |- - - * - 3 3i5:3 1 3 | D(3)[01:10]
- - - -*4464145]| E(4[01:10] |- - - - * 33:5:3 13| E(4)[01:10]
-3-44*-55-56]| F(5)[01:10] |(-2-33*-44- 4| F(5)[01:10]
-3344-*56-6.7:| G(6)[01:10] ||- 2233 - * 4:5:-i5:] G(6)[01 10
- - -6655*525%6 | H(7)[10:10] ||- - -:5:5:4.4 * 4 24 | H(7)[10: 10]
- 3244565 * - -:7:| 1:(8)/10:10] ||- 2133 4i5:4 * - - | 1:(8 11)[10: 10]
-0-11--2-"*-.:1[3:(9)/[10:01] - 0-11-:2-*- | J:(9)[10:01]
- 3244565 - *i7:| K(10)[01:10] | |- 2 1 3 3 454 - - * | K (10)[01‘ 10
- 43505 6:7:6:7:-:°7:7 L: (11)[10: 00]

J

Algorithm (4)

o oo

— —
doHdHOOHdO o
OO AA1O0O O
SSO ~H O
OCOOMNMNOOO—
L L 4 . o v —_—
NSNS N
O ANMTLOHOOOD
R N S
<o 0oL d -~
1 O _OO_ 1 1 X

_10113 X

itioning

SJs. 10
J

H

Cligue Part

&MI

ABCDEFGHI

I
I
I
o
G:_OOOO_*__
F:_l_ll*_3_
E: o x OO0
Qi + + +x 1 HOHO
1
C: 1 1 X 1 1 1 ©O O
B: P 1 01 1100
A__* 1 1 1 1 1 1 1 1
o o
— —
O HO0O0HOO
Od O AAd O —"1HO
OSSO e O —~O
COOOOOOO—
L dL L L .1[1[
NSNS AN N e
OdANMSITLIOO~00

[N

<oO0OoWuwLCIT_~

_0_1_1__2_*
_10224_3* |
__'4432*32
_001_1__*2_ .
_1_22*.34_
____*21_421
___*_21421_
__*___0_0_
rx o1 0 =0 1 HO

X [[I R R R T B R |

Cligue Partitioning Algorithm (5)
Cf

1
B
9
J
6,10
ABCDEFGJ
s~ - - - .. - | A(0)[00:01]
- % - - - 090:0 | B (1)[00° 10]
o« - 2270 - | C(2)[00:01]

- * - 000]| D(3, 7)[11:10]

- - * 000 | E(4)[01:10]
0-00*%--| F(S5 8 11)[11:10]
0:0 00 - * - | G(6 10)[01: 10]
0-00 * | J:(9)[10:01]

1,6,10

STmMOoOm>
NN AN

0) [00: 01]
1, 6, 10)

2) [00: 01]
31

7)[11

4)[01: 10]

[01: 10]
10]

5, 8, 11)]
9) [10: 01]

[11: 10]

Cligue Partitioning Algorithm (6)

@0 1,6,10 @0 1,6,10

© [©?

9 3,5,7,8,11 3,5,7,8,11
@\s @
4 4,9
®

ABCDE]J ABCDE
I A:(0)[00:01] * - - - - | A(0)[00:01]
- - - B:(1, 6,10)[01:10] - * - - - | B(1, 6,10)[01:10]
- F - - C (2)[00:01] - - * - - | C(2)[00:01]
* - | D(3, 5 7, 8 11)[11:10] - --*- |1 D(3, 5 7, 8 11)[11:10]
- %107 E(4)[01:10] - - - - *| E(4, 9][11:11]
- - - =507 J:(9)[10: 01]

A:v,
| | o B:v,, Vs, Vg
Final register binding result > C v,
D:vy, Vs, Vs, Vg,V
E:v,, Vg

Functional Unit Binding (1)

O Allocate each operation to functional unit instance
» Left-edge algorithm cannot consider interconnect cost

» Interconnect cost : # of 10 ports :
(0]0)

IE:unEctiosnaI Ebinéling
using left-edge algorithm

connectivity of operations
and registers

Functional Unit Binding (2)

O Use cligue partitioning and consider the interconnect

cost

» Resource vector : each element represent register

Vo Vs Vg
A B C D E

YA VAAVAAVATA

~7
~_-" N
~.
PagH

A B C ’AS_‘ E
Vg V. V,
Vio Vs

connectivity of operations
and registers

00100 6) (5) 10000

01000 00010
compatibility graph

Functional Unit Binding (3)

10000 10000 10000
00010 00010 00010
(3)
00100 :> 00100 00100
00001 ' 00001 :> 01001
10000 00100 10001 10001
00010 01000 01010 01010
Vo Vy v, Vo Vo Vo 10001 @
Al|B||E C||D 01010
D| |E| |C Al|B . . .
T —
B Y R
00100
@ 01001
Vy/ Vo/V Va/ V
V4 V5 V1 V6 V3 3 5 1 6 4
Disadvantage using
= — =i LS
i i ; e : clique partitioning :
E mc m - EP ’—é‘ Dl [E minimum # of FUs is
y y Vs Vg v, NOT guaranteed!
Va v.2 v Ve Vg (but often OK)
10 ° FU binding with clique partitionin
FU binding with left-edge algorithm 9 quep 9

Port Binding (1)

O Assign data to ports for units with
multiple ports (ex:adder)

> Input data simultaneously used for an
operation are not compatible (must be

assigned to different ports)

» Use cligue partitioning : works for this
example - but does not work in general

V3 116-,1@ 4 V3
Vi Vg
v . B E|. Vi vs
ve V7 o " Vv v
| v Y —
0 8 4 3,5,7,8 VlO V4 V8
B D E
D BI|E||D

ADD ADD

Port Binding (2)

O Consider 5 additions
Vg + Vq, Vo, + Vg, V, + Ve, Vg + Vo, Vg + Vg
> Registers A : (v, V,), B 1 (vy, Vg, Vg), C & (V3, Vg, Vi), D 1 (V4, Vg)

» Cannot directly allocate registers to 2 ports (register B need to
be allocated to both ports)

Vo V4 V5 oV, -2 148 0279 148
Vo, Vg Vg Vg A B AD B
A B ¢ D 356 79 I:D 3,56 need 3 ports!
c D C (divide register B)
e ﬂ
0,2,7,9,1 0,2,7,9-rvo. 1.
Allpl[Bl[c A,D,BO " IaD BO|
K"?/ o e R 356 ag
C.Bi C B1
ADD

Datapath Construction

After resource binding, construct the datapath
— Netlist composed of functional units, registers, multiplexers, etc.

v Viaa V
ROM ROM 13? 14@ 12
L 4
 J
' y
N0 LN L [a] e e |[p] [E
MULT1] MULT2| |ADD | " /N /A /" /4
Vs|Vio ValVe V7| Ve Vol Vi ‘V vl \\//71“\\//3V“V4
Vg 9 Vi1 Vgl |10 Vﬁ 5
L4
L
RORONEO

Controller Generation (1)

Control signal generation

for functional units

Vo Vo
- - Vo Vg
- " A|lE
Y
Vy/ Va/ Vv, |::> th|0‘¥
MULT1
MULT1

always@ (state)

ctrl0 = 1;

ctrl0 = 0;
else ctrl0 = 1b’x;

if (state == S1 || state == S2 ||
state == S3 || state == S4)

else if (state == S5 || state == S6)

0

v Vo vy
MULT1 ¢—2——=>——"—4

1 2 3 45 6 7. 8

\Y4
MULT2 ¢—2—g ,_\’6_¢
VO ADD Y
~—e ~
\V; (Vo q
LV, V4
V, V3 > V-
V4 VvV, > Vg
Vv Vo S always@(state)
10 8 Vi1 v L
if (state == S4 || state == S6 ||
BIIE|ID state == S7)
ctrll = 1;
ctrl1 else if (state == S3)
ctrll = 0;
ADD else ctrll = 1b’x;

Controller Generation (2)

Control signal generation
for registers

MULT1 ‘MULTZ ADD
V3|Vio Va|Ve V7| Vs

w2

wl

always@ (posedge clk) begin
A if (state == SO) REG_A = w4;

if (state == S0) REG_B = w5;
B else if (state == S5) REG_B = w2;
else if (state == S6) REG_B = w1,

C{ if (state == S0) REG_C = w6;
{if (state == S2 || state == S4) REG_D = w1,
D

REG..

REG;

else if (state == S3 || state == S6 || state == S7)
REG_D =ws3;

E{H(ﬁme::SZ)REG_E:mQ; REG;

else if (state == S4) REG_E =ws3;
end REG

REG:

0
w[0] W[l] w[2]

Controller Generation (3)

 Finite state machine %
construction

condO = (enable = 0);

initial state = S_init;
always@ (posedge clk)
if (state == S _init || state == S8)
if (enable != 0) state = SO;

condO

else state = S_end,; 1 5
else If (state == SO) state = S1; W] wi2] return
else if (state == S1) state = S2;
elseif b1\/ /b2 | a1 22
u[l] V[1]\ /VI2]
@
v[3]

High-Level Synthesis Summary (1)

O High-Level Synthesis flow :

A) Design capture (HDLs, C/C++, signal-flow graph,
etc)

B) Compilation to internal representation (Control-Data-
Flow Graph)

C) Resource allocation
D) Operation scheduling
E) Resource binding

F) RTL description generation
v' Datapath construction
v' Controller generation

High-Level Synthesis Summary (2)

O Scheduling and a series of resource bindings
(registers, functional units, ports, etc.) are very
closely related

Consider the register cost, interconnect cost, and
other hardware costs during scheduling = can
Incorporate these costs as forces in force-directed
scheduling

Simultaneous/iterative scheduling and binding -
more accurate hardware cost evaluation on actual
binding and feedback to the scheduler

High-Level Synthesis Summary (3)

O Extracting parallelism beyond basic-blocks

Loop pipelining (overlap scheduling of successive
loop iterations)

- Well studied in DSP applications

- Becomes complicated when loop includes control-flows

Multiple control-flow execution
- Not well studied yet in terms of automatic synthesis

- Key issue is how to extract global parallelism (related to the
description language issues)

- Manually done by the hardware designers

	VLSI System Design�Part V : High-Level Synthesis(3)�Oct.2006 - Feb.2007�
	High-Level Synthesis Flow
	Resource Binding
	Data Lifetime (1)
	Data Lifetime (2)
	Data Lifetime (3)
	Data Lifetime (4)
	Data Lifetime After Scheduling (1)
	Interval Graph for Data Lifetime
	Register Binding Problem
	Left-Edge Algorithm (1)
	Left-Edge Algorithm (2)
	Left-Edge Algorithm (3)
	Left-Edge Algorithm (4)
	Left-Edge Algorithm (5)
	Left-Edge Algorithm (5)
	Properties of Left-Edge Algorithm
	Task-To-Agent Problem (1)
	Task-To-Agent Problem (2)
	Compatibility Graph vs Conflict Graph
	Graph Coloring Problem
	Greedy Graph Coloring Algorithm
	Clique Partitioning Algorithm (1)
	Clique Partitioning Algorithm (2)
	Considering Interconnect Cost �in Register Binding
	Clique Partitioning Algorithm (3)
	Clique Partitioning Algorithm (4)
	Clique Partitioning Algorithm (5)
	Clique Partitioning Algorithm (6)
	Functional Unit Binding (1)
	Functional Unit Binding (2)
	Functional Unit Binding (3)
	Port Binding (1)
	Port Binding (2)
	Datapath Construction
	Controller Generation (1)
	Controller Generation (2)
	Controller Generation (3)
	High-Level Synthesis Summary (1)
	High-Level Synthesis Summary (2)
	High-Level Synthesis Summary (3)

