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High-Level Synthesis and 
Its Design Environment

• High-level synthesis converts the design described 
at algorithm-level to RTL
Needs a rich module library consisting of high-level 
circuit blocks (adders, multipliers, ALUs, decoders, 
RAM, ROM, etc.) as well as high quality standard 
cell library
Numerous circuit implementation techniques for 
arithmetic logic are captured into these libraries, 
and high-level synthesis provides a path for utilizing 
these design resource efficiently and intelligently.



Algorithm-Level Description

RTL Structural Description 

Logic/Transistor Circuit Description

VLSI Mask Layout

Logic Synthesis

Layout Synthesis

（High-Level Synthesis）

System Specification

（System-Level Synthesis）

Layout Verification

Logic Verification

Behavioral Verification

System Verification

CAD Technology in VLSI Design
Synthesis tools : transformation of 
a design description into a more 
detailed form of description (logic 
synthesis, layout synthesis)
Verification tools : checking the 
correctness of the description 
(simulators, symbolic verification)

– Logic synthesis and layout 
synthesis tools have matured enough 
to be used by most designers
– High-level synthesis tools started 
to appear in real design cases (but 
many designers still prefer RTL as 
their design entry)
– System-level synthesis tools do 
not yet exist. (currently an active 
research area)



High-Level Synthesis/Verification

Algorithm Description Software languages (C/C++, Java)
Hardware languages (Verilog, VHDL)

< 100 – 10K lines >

Functional Simulation

RTL Structural Description Verilog, VHDL
< 1K – 100K lines >

Architecture description
Module (CPU, memory, register, functional unit, IO interface) 
Bus architecture

Module description (functional/structural)
Combinational/sequential circuit description

manual translation
(High-Level Synthesis）



Register-Transfer Level 
Description and Synthesis

Register-transfer level description specifies the sequence of events at 
each clock cycle at each circuit block

Design description at architecture level
Synthesis parameters (constraints/cost function) : clock period, circuit size, 
power
Advantage : full control of architecture specification and cycle-accurate 
behavior specification

Exploit various forms of process parallelization techniques
Accurate system level simulation (with external hardware devices) is possible
Synthesis tools (logic synthesis, technology mapping, cell library generator) are 
mature

Disadvantage : time consuming
Concurrent behavior of RTL can be hard understand (Bugs are easily introduced, 
but hard to keep track)
RTL verification through simulation is time-consuming
Requires experience in hardware design



Behavioral Level Description and 
High-Level Synthesis

Behavioral level description specifies the sequence of 
computations (such as in software programs)

Design description at algorithm level
Synthesis parameters (constraints/cost function) : # functional units, 
# registers, # control steps
Advantage : 

Explore design space more efficiently (by changing synthesis 
parameters, trying different algorithms)
Less time consuming (less number of codes, easy to debug, fast 
simulation, does not require much hardware design experience)

Disadvantage : architecture determined by the (somewhat 
inmature) synthesis tool

May produce less efficient architecture compared to manual 
architecture design (current high-level synthesis tools usually produce 
Very-Long Instruction Word (VLIW) architecture only)



Background of 
High-Level Synthesis

• Processor technology
Instruction-level parallelism
Very-Long Instruction Word (VLIW) architecture

Issues multiple operations on multiple functional units

• Digital signal processing
Input description : signal-flow graph

Edge : signal
Vertex : operator (add/subtract, multiply)
Behavior : repetitive process

Hardware compilation 
Direct mapping : allocate hardware to each operator
Resource shared mapping : allocate hardware to 
multiple operators using VLIW architecture



Applications for 
High-Level Synthesis

• Digital signal processing
Filtering : audio, image, data transmission 
(wired/wireless)
Transformation : DCT, FFT, wavelet, etc.
Codec : audio/video compression, decompression

• Graphics Engine
• Communication

Network switching
Protocol
Terminal, modem

• Embedded controllers
Motors
Sensors



High-Level Synthesis Flow
A) Design capture (HDLs, C/C++, signal-flow graph, 

etc)
B) Compilation to internal representation 

• Data-flow graph (DFG)
• Control-flow graph (CFG)
• Control-data-flow graph (CDFG)

C) Resource allocation
• Specify available functional units

D) Operation scheduling
• Assign each operation to control steps

E) Resource binding 
• Assign each data to registers
• Assign each operation to functional units



Design Example : IIR Filter (1)
• Infinite Impulse Response (IIR) filter

w(t) = x(t) + b1 ⋅ w(t – 1) + b2 ⋅ w(t – 2) 
y(t) = a0 ⋅ w(t) + a1 ⋅ w(t – 1) + a2 ⋅ w(t – 2)

a0, a1, a2, b1, b2 : filter coefficients
x(t) : input signal at time t
y(t) : output signal at time t
w(t), w(t – 1), w(t – 2) : internal signals (states)

difference 
equations
for IIR filter

low-pass filter

a0 = 0.2958
a1 = 0.5876
a2 = 0.2958
b1 = – 0.2138
b2 = – 0.4518
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Design Capture : Signal-Flow Graph
• Infinite Impulse Response (IIR) filter

w(t) = x(t) + b1 ⋅ w(t – 1) + b2 ⋅ w(t – 2) 
y(t) = a0 ⋅ w(t) + a1 ⋅ w(t – 1) + a2 ⋅ w(t – 2)

: addition

: multiplication (by constant)

D : sampling delay
(signal is delayed by 1 sampling period)
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Design Capture : C Language
void IIR()
{

extern const float a[ ], b[ ]; // filter coefficients
int x, y; // input and output signals
int w[3] = {0, 0, 0}; // internal signals (states)
extern int enable; // assume “enable” is controlled by different program thread
while (enable != 0){     

w[2] = w[1];
w[1] = w[0];
x = GetInput ();
w[0] = x + b[1] * w[1] + b[2] * w[2];
y = a[0] * w[0] + a[1] * w[1] + a[2] * w[2];
PutOutput (y) ;
}

}
}

x(t) y(t)w(t)

w(t – 2)

a0

a1

a2b2

b1

w(t – 1)

signal flow graph

D

D



Design Capture : Verilog
module IIR(x, y, xready, yready);
input [15:0] x; // port signals can only be unsigned
input xready;
output [15:0] y; // unsigned : needs to be reinterpreted to signed number externally
output yready;
integer w[0:2]; // signed integer
reg yready;
parameter a0 = 0.2958, a1 = 0.5876, a2 = 0.2958;
parameter b1 = – 0.2138, b2 = – 0.4518;
initial begin

w[0] = 0; w[1] = 0; w[2] = 0; yready = 0;
end
always@(xready) begin

if(xready == 1) begin
w[2] = w[1];
w[1] = w[0];
w[0] = x + b1 * w[1] + b2 * w[2];
y = a0 * w[0] + a1 * w[1] + a2 * w[2];
yready = 1;

end
wait(xready == 0) yready = 0;

end
endmodule

Signed integer (2’s complement) 
cannot be directly implemented in 
Verilog
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Limitations in Current Design 
Capture Environment (1)

• Numerical accuracy problem
Digital signal processing theory : based on real numbers
Digital implementation : fixed-point numbers

Quantization noise, overflow
Major effort on algorithm design is to determine the optimal word 
length and the decimal position for each data (these decisions 
directly affect the hardware complexity)
Need to explicitly describe bit-shift operations to implement the 
required word lengths and decimal positions (BUT decimal 
positions are implicit)

State-of-the-art Digital Signal Processors (DSPs) have 
floating-point units because of these complications

decimal position

word length

integer part fraction part

word lengths and decimal positions 
may vary for different data 



Limitations in Current Design 
Capture Environment (2)

• Limitation in behavioral description
Software language (C, Java) : 

Concurrent behavior
Interfacing with external hardware device

HDL (Verilog, VHDL) : 
Difficult to describe the behavior based on event-triggered processes
May need to introduce signals for the sake of event-triggering which are 
not relevant to the actual behavior. 

Signal-flow graph : 
Cannot express control-flows (if-else, while, ...)

There are other behavioral description languages
Recent efforts based on C++ : SystemC, SpecC

• Lack of an adequate behavioral description language is one of 
the major obstacle for the high-level synthesis to gain its 
popularity



High-Level Synthesis Flow
A) Design capture (HDLs, C/C++, signal-flow graph, 

etc)
B) Compilation to internal representation 

• Data-flow graph (DFG)
• Control-flow graph (CFG)
• Control-data-flow graph (CDFG)

C) Resource allocation
• Specify available functional units

D) Operation scheduling
• Assign each operation to control steps

E) Resource binding 
• Assign each data to registers
• Assign each operation to functional units



Control-Data-Flow Graph Generation (1)

w[0] = 0; w[1] = 0; w[2] = 0; 
while (enable != 0){

w[2] = w[1];
w[1] = w[0];
x = GetInput();
u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[0];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];
y = v[0] + v[3];
PutOutput(y) ;

}

• Basic-block : a sequence of 
instructions which do not include 
jumps (such caused by if-else, 
for/while loop)

basic-blocks

Here, IO function calls GetInput() and 
PutOutput(y) are treated as atomic (primitive) 
operations and included inside the basic-
block.
Usually, function calls are treated as 
independent basic-blocks since instruction 
sequence jumps inside those functions.



w[2] = w[1];
w[1] = w[0];
x = GetInput();
u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[0];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];
y = v[0] + v[3];
PutOutput(y) ;

w[0] = 0;
w[1] = 0; 
w[2] = 0; 

cond0 = (enable != 0);

return;

T F

• Control-flow graph : specifies the 
control-flow of basic-block 
executions
– Vertex : basic-block, branch, join
– Edge : control-flow

Control-Data-Flow Graph Generation (2)

T F

condition

branch node
(control fork node)

control join node

cond0



Control-Flow Graph Examples

if (cond0) A;
else if (cond1) B;
else C;

A B C

T F

T F

cond0

cond1

while (cond0){
A;
if(cond1){

B;
continue;

}
if(cond2){

C;
break;

}
}

T F

cond0

A
cond1

cond0

cond1

cond0

cond1
T F

F T

cond2

cond2

C

B



• Data lifetime within basic blocks: 
– Starts after the data assignment 

operation 
– Ends after the last operation using 

the data 
• Here, the purpose of lifetime 

analysis is to distinguish 
disconnected lifetimes having the 
same data name (w[1] and w[0] 
have disconnected lifetimes)

• Data-flow arc generates from the 
data assignment operation and 
terminates to each operation using 
the data within its lifetime

w[2] = w[1];
w[1] = w[0];
x = GetInput();
u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[0];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];
y = v[0] + v[3];
PutOutput(y) ;

w[2]
w[1]

x
u[1]

u[2]
u[3]

w[0]
v[0]

v[1]
v[2]

v[3]
y

w[1] w[0]

Control-Data-Flow Graph Generation (3)



x

y

a0

a1 a2b1 b2

w[1] w[2]

u[1] u[2] v[1] v[2]

u[3]

v[0]

v[3]

w[0]

w[0] w[1]

• Data lifetime without its assignment operation within the basic-
block is connected to input node  

Control-Data-Flow Graph Generation (4)
II I

O

w[2] = w[1];
w[1] = w[0];
x = GetInput();
u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[0];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];
y = v[0] + v[3];
PutOutput(y) ;

w[2]
w[1]

x
u[1]

u[2]
u[3]

w[0]
v[0]

v[1]
v[2]

v[3]

w[1] w[0]

y



Control-Data-Flow Graph

w[0] = 0; w[1] = 0; w[2] = 0; 
while (enable != 0){

w[2] = w[1];
w[1] = w[0];
x = GetInput();
u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[0];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];
y = v[0] + v[3];
PutOutput(y) ;

}

• Control-flow graph (directed 
graph) : specifies the control-flow 
of basic-block executions

• Data-flow graph (directed acyclic 
graph) : specifies data 
dependencies among operations 
within the basic-block

cond0
T F

return

O O O

0 0 0
w[0] w[1] w[2]

control-flow arcs

data-flow arcs

basic-block

cond0 = (enable != 0);

x

y

a0

a1 a2b1 b2

w[1] w[2]

u[1] u[2] v[1] v[2]

u[3]

v[0]

v[3]

w[0]

II I

O



• Data dependencies specified by the data-
flow arcs determines the order of 
executions among operations :

Arc opi opj indicates that opj cannot 
execute until opi is executed
An operation can execute if all the input 
data have already been computed

• Within the basic-block, operations can be 
executed in parallel as long as the 
execution order do not violate the data 
dependencies.

• Multiple basic-blocks cannot be executed 
in parallel (control-flows needs to be 
evaluated sequentially)
Parallelism is limited within the basic-
block (Instruction-Level Parallelism)

General Behavioral Model of 
Control-Data-Flow Graph (1)

As-Soon-As-Possible (ASAP) Scheduling

x

y

a0

a1 a2b1 b2

w[1] w[2]

u[1] u[2] v[1] v[2]

u[3]

v[0]

v[3]

w[0]

II I
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step 0

step 1

step 2

step 3

step 4

step 5

step 6



• Multiple basic-blocks cannot be 
executed in parallel (control-flows 
needs to be evaluated sequentially)
Parallelism is limited within the basic-
block (Instruction-Level Parallelism)
Fundamental performance bottleneck 
for general high-level synthesis 
Parallel compiler techniques such as 
speculative execution and loop 
unrolling can make the basic-blocks 
larger by moving operations across 
basic-block boundaries (code-motion)

General Behavioral Model of 
Control-Data-Flow Graph (2)
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