
VLSI System Design
Part V : High-Level Synthesis(1)

Oct.2006 - Feb.2007

Lecturer : Tsuyoshi Isshiki
Dept. Communications and Integrated Systems,

Tokyo Institute of Technology

isshiki@vlsi.ss.titech.ac.jp
http://www.vlsi.ss.titech.ac.jp/~isshiki/VLSISystemDesign/top.html

mailto:isshiki@vlsi.ss.titech.ac.jp

High-Level Synthesis and
Its Design Environment

• High-level synthesis converts the design described
at algorithm-level to RTL
Needs a rich module library consisting of high-level
circuit blocks (adders, multipliers, ALUs, decoders,
RAM, ROM, etc.) as well as high quality standard
cell library
Numerous circuit implementation techniques for
arithmetic logic are captured into these libraries,
and high-level synthesis provides a path for utilizing
these design resource efficiently and intelligently.

Algorithm-Level Description

RTL Structural Description

Logic/Transistor Circuit Description

VLSI Mask Layout

Logic Synthesis

Layout Synthesis

（High-Level Synthesis）

System Specification

（System-Level Synthesis）

Layout Verification

Logic Verification

Behavioral Verification

System Verification

CAD Technology in VLSI Design
Synthesis tools : transformation of
a design description into a more
detailed form of description (logic
synthesis, layout synthesis)
Verification tools : checking the
correctness of the description
(simulators, symbolic verification)

– Logic synthesis and layout
synthesis tools have matured enough
to be used by most designers
– High-level synthesis tools started
to appear in real design cases (but
many designers still prefer RTL as
their design entry)
– System-level synthesis tools do
not yet exist. (currently an active
research area)

High-Level Synthesis/Verification

Algorithm Description Software languages (C/C++, Java)
Hardware languages (Verilog, VHDL)

< 100 – 10K lines >

Functional Simulation

RTL Structural Description Verilog, VHDL
< 1K – 100K lines >

Architecture description
Module (CPU, memory, register, functional unit, IO interface)
Bus architecture

Module description (functional/structural)
Combinational/sequential circuit description

manual translation
(High-Level Synthesis）

Register-Transfer Level
Description and Synthesis

Register-transfer level description specifies the sequence of events at
each clock cycle at each circuit block

Design description at architecture level
Synthesis parameters (constraints/cost function) : clock period, circuit size,
power
Advantage : full control of architecture specification and cycle-accurate
behavior specification

Exploit various forms of process parallelization techniques
Accurate system level simulation (with external hardware devices) is possible
Synthesis tools (logic synthesis, technology mapping, cell library generator) are
mature

Disadvantage : time consuming
Concurrent behavior of RTL can be hard understand (Bugs are easily introduced,
but hard to keep track)
RTL verification through simulation is time-consuming
Requires experience in hardware design

Behavioral Level Description and
High-Level Synthesis

Behavioral level description specifies the sequence of
computations (such as in software programs)

Design description at algorithm level
Synthesis parameters (constraints/cost function) : # functional units,
registers, # control steps
Advantage :

Explore design space more efficiently (by changing synthesis
parameters, trying different algorithms)
Less time consuming (less number of codes, easy to debug, fast
simulation, does not require much hardware design experience)

Disadvantage : architecture determined by the (somewhat
inmature) synthesis tool

May produce less efficient architecture compared to manual
architecture design (current high-level synthesis tools usually produce
Very-Long Instruction Word (VLIW) architecture only)

Background of
High-Level Synthesis

• Processor technology
Instruction-level parallelism
Very-Long Instruction Word (VLIW) architecture

Issues multiple operations on multiple functional units

• Digital signal processing
Input description : signal-flow graph

Edge : signal
Vertex : operator (add/subtract, multiply)
Behavior : repetitive process

Hardware compilation
Direct mapping : allocate hardware to each operator
Resource shared mapping : allocate hardware to
multiple operators using VLIW architecture

Applications for
High-Level Synthesis

• Digital signal processing
Filtering : audio, image, data transmission
(wired/wireless)
Transformation : DCT, FFT, wavelet, etc.
Codec : audio/video compression, decompression

• Graphics Engine
• Communication

Network switching
Protocol
Terminal, modem

• Embedded controllers
Motors
Sensors

High-Level Synthesis Flow
A) Design capture (HDLs, C/C++, signal-flow graph,

etc)
B) Compilation to internal representation

• Data-flow graph (DFG)
• Control-flow graph (CFG)
• Control-data-flow graph (CDFG)

C) Resource allocation
• Specify available functional units

D) Operation scheduling
• Assign each operation to control steps

E) Resource binding
• Assign each data to registers
• Assign each operation to functional units

Design Example : IIR Filter (1)
• Infinite Impulse Response (IIR) filter

w(t) = x(t) + b1 ⋅ w(t – 1) + b2 ⋅ w(t – 2)
y(t) = a0 ⋅ w(t) + a1 ⋅ w(t – 1) + a2 ⋅ w(t – 2)

a0, a1, a2, b1, b2 : filter coefficients
x(t) : input signal at time t
y(t) : output signal at time t
w(t), w(t – 1), w(t – 2) : internal signals (states)

difference
equations
for IIR filter

low-pass filter

a0 = 0.2958
a1 = 0.5876
a2 = 0.2958
b1 = – 0.2138
b2 = – 0.4518

-40

-20

0

20

40

60

80

100

120

140

input(x)

output(y)

Design Capture : Signal-Flow Graph
• Infinite Impulse Response (IIR) filter

w(t) = x(t) + b1 ⋅ w(t – 1) + b2 ⋅ w(t – 2)
y(t) = a0 ⋅ w(t) + a1 ⋅ w(t – 1) + a2 ⋅ w(t – 2)

: addition

: multiplication (by constant)

D : sampling delay
(signal is delayed by 1 sampling period)

–
w(0)

0

w(0)
w(1)

1

w(1)
w(2)

2

w(2)
w(3)

3

w(3)
w(4)

4

w(4)
w(5)

5

w(t–1)
w(t)

t

sampling period

a0 = 0.2958
a1 = 0.5876
a2 = 0.2958
b1 = – 0.2138
b2 = – 0.4518

x(t) y(t)w(t)

w(t – 2)

a0

a1

a2b2

b1

w(t – 1)

signal flow graph

D

D

Design Capture : C Language
void IIR()
{

extern const float a[], b[]; // filter coefficients
int x, y; // input and output signals
int w[3] = {0, 0, 0}; // internal signals (states)
extern int enable; // assume “enable” is controlled by different program thread
while (enable != 0){

w[2] = w[1];
w[1] = w[0];
x = GetInput ();
w[0] = x + b[1] * w[1] + b[2] * w[2];
y = a[0] * w[0] + a[1] * w[1] + a[2] * w[2];
PutOutput (y) ;
}

}
}

x(t) y(t)w(t)

w(t – 2)

a0

a1

a2b2

b1

w(t – 1)

signal flow graph

D

D

Design Capture : Verilog
module IIR(x, y, xready, yready);
input [15:0] x; // port signals can only be unsigned
input xready;
output [15:0] y; // unsigned : needs to be reinterpreted to signed number externally
output yready;
integer w[0:2]; // signed integer
reg yready;
parameter a0 = 0.2958, a1 = 0.5876, a2 = 0.2958;
parameter b1 = – 0.2138, b2 = – 0.4518;
initial begin

w[0] = 0; w[1] = 0; w[2] = 0; yready = 0;
end
always@(xready) begin

if(xready == 1) begin
w[2] = w[1];
w[1] = w[0];
w[0] = x + b1 * w[1] + b2 * w[2];
y = a0 * w[0] + a1 * w[1] + a2 * w[2];
yready = 1;

end
wait(xready == 0) yready = 0;

end
endmodule

Signed integer (2’s complement)
cannot be directly implemented in
Verilog

x(t) y(t)w(t)

w(t – 2)

a0

a1

a2b2

b1

w(t – 1)

signal flow graph

D

D

Limitations in Current Design
Capture Environment (1)

• Numerical accuracy problem
Digital signal processing theory : based on real numbers
Digital implementation : fixed-point numbers

Quantization noise, overflow
Major effort on algorithm design is to determine the optimal word
length and the decimal position for each data (these decisions
directly affect the hardware complexity)
Need to explicitly describe bit-shift operations to implement the
required word lengths and decimal positions (BUT decimal
positions are implicit)

State-of-the-art Digital Signal Processors (DSPs) have
floating-point units because of these complications

decimal position

word length

integer part fraction part

word lengths and decimal positions
may vary for different data

Limitations in Current Design
Capture Environment (2)

• Limitation in behavioral description
Software language (C, Java) :

Concurrent behavior
Interfacing with external hardware device

HDL (Verilog, VHDL) :
Difficult to describe the behavior based on event-triggered processes
May need to introduce signals for the sake of event-triggering which are
not relevant to the actual behavior.

Signal-flow graph :
Cannot express control-flows (if-else, while, ...)

There are other behavioral description languages
Recent efforts based on C++ : SystemC, SpecC

• Lack of an adequate behavioral description language is one of
the major obstacle for the high-level synthesis to gain its
popularity

High-Level Synthesis Flow
A) Design capture (HDLs, C/C++, signal-flow graph,

etc)
B) Compilation to internal representation

• Data-flow graph (DFG)
• Control-flow graph (CFG)
• Control-data-flow graph (CDFG)

C) Resource allocation
• Specify available functional units

D) Operation scheduling
• Assign each operation to control steps

E) Resource binding
• Assign each data to registers
• Assign each operation to functional units

Control-Data-Flow Graph Generation (1)

w[0] = 0; w[1] = 0; w[2] = 0;
while (enable != 0){

w[2] = w[1];
w[1] = w[0];
x = GetInput();
u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[0];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];
y = v[0] + v[3];
PutOutput(y) ;

}

• Basic-block : a sequence of
instructions which do not include
jumps (such caused by if-else,
for/while loop)

basic-blocks

Here, IO function calls GetInput() and
PutOutput(y) are treated as atomic (primitive)
operations and included inside the basic-
block.
Usually, function calls are treated as
independent basic-blocks since instruction
sequence jumps inside those functions.

w[2] = w[1];
w[1] = w[0];
x = GetInput();
u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[0];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];
y = v[0] + v[3];
PutOutput(y) ;

w[0] = 0;
w[1] = 0;
w[2] = 0;

cond0 = (enable != 0);

return;

T F

• Control-flow graph : specifies the
control-flow of basic-block
executions
– Vertex : basic-block, branch, join
– Edge : control-flow

Control-Data-Flow Graph Generation (2)

T F

condition

branch node
(control fork node)

control join node

cond0

Control-Flow Graph Examples

if (cond0) A;
else if (cond1) B;
else C;

A B C

T F

T F

cond0

cond1

while (cond0){
A;
if(cond1){

B;
continue;

}
if(cond2){

C;
break;

}
}

T F

cond0

A
cond1

cond0

cond1

cond0

cond1
T F

F T

cond2

cond2

C

B

• Data lifetime within basic blocks:
– Starts after the data assignment

operation
– Ends after the last operation using

the data
• Here, the purpose of lifetime

analysis is to distinguish
disconnected lifetimes having the
same data name (w[1] and w[0]
have disconnected lifetimes)

• Data-flow arc generates from the
data assignment operation and
terminates to each operation using
the data within its lifetime

w[2] = w[1];
w[1] = w[0];
x = GetInput();
u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[0];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];
y = v[0] + v[3];
PutOutput(y) ;

w[2]
w[1]

x
u[1]

u[2]
u[3]

w[0]
v[0]

v[1]
v[2]

v[3]
y

w[1] w[0]

Control-Data-Flow Graph Generation (3)

x

y

a0

a1 a2b1 b2

w[1] w[2]

u[1] u[2] v[1] v[2]

u[3]

v[0]

v[3]

w[0]

w[0] w[1]

• Data lifetime without its assignment operation within the basic-
block is connected to input node

Control-Data-Flow Graph Generation (4)
II I

O

w[2] = w[1];
w[1] = w[0];
x = GetInput();
u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[0];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];
y = v[0] + v[3];
PutOutput(y) ;

w[2]
w[1]

x
u[1]

u[2]
u[3]

w[0]
v[0]

v[1]
v[2]

v[3]

w[1] w[0]

y

Control-Data-Flow Graph

w[0] = 0; w[1] = 0; w[2] = 0;
while (enable != 0){

w[2] = w[1];
w[1] = w[0];
x = GetInput();
u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[0];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];
y = v[0] + v[3];
PutOutput(y) ;

}

• Control-flow graph (directed
graph) : specifies the control-flow
of basic-block executions

• Data-flow graph (directed acyclic
graph) : specifies data
dependencies among operations
within the basic-block

cond0
T F

return

O O O

0 0 0
w[0] w[1] w[2]

control-flow arcs

data-flow arcs

basic-block

cond0 = (enable != 0);

x

y

a0

a1 a2b1 b2

w[1] w[2]

u[1] u[2] v[1] v[2]

u[3]

v[0]

v[3]

w[0]

II I

O

• Data dependencies specified by the data-
flow arcs determines the order of
executions among operations :

Arc opi opj indicates that opj cannot
execute until opi is executed
An operation can execute if all the input
data have already been computed

• Within the basic-block, operations can be
executed in parallel as long as the
execution order do not violate the data
dependencies.

• Multiple basic-blocks cannot be executed
in parallel (control-flows needs to be
evaluated sequentially)
Parallelism is limited within the basic-
block (Instruction-Level Parallelism)

General Behavioral Model of
Control-Data-Flow Graph (1)

As-Soon-As-Possible (ASAP) Scheduling

x

y

a0

a1 a2b1 b2

w[1] w[2]

u[1] u[2] v[1] v[2]

u[3]

v[0]

v[3]

w[0]

II I

O

step 0

step 1

step 2

step 3

step 4

step 5

step 6

• Multiple basic-blocks cannot be
executed in parallel (control-flows
needs to be evaluated sequentially)
Parallelism is limited within the basic-
block (Instruction-Level Parallelism)
Fundamental performance bottleneck
for general high-level synthesis
Parallel compiler techniques such as
speculative execution and loop
unrolling can make the basic-blocks
larger by moving operations across
basic-block boundaries (code-motion)

General Behavioral Model of
Control-Data-Flow Graph (2)

T F

cond0

A
cond1

cond0

cond1
T F

F T

cond2

cond2

C

B

	VLSI System Design�Part V : High-Level Synthesis(1)�Oct.2006 - Feb.2007�
	High-Level Synthesis and �Its Design Environment
	CAD Technology in VLSI Design
	High-Level Synthesis/Verification
	Register-Transfer Level �Description and Synthesis
	Behavioral Level Description and �High-Level Synthesis
	Background of �High-Level Synthesis
	Applications for �High-Level Synthesis
	High-Level Synthesis Flow
	Design Example : IIR Filter (1)
	Design Capture : Signal-Flow Graph
	Design Capture : C Language
	Design Capture : Verilog
	Limitations in Current Design Capture Environment (1)
	Limitations in Current Design Capture Environment (2)
	High-Level Synthesis Flow
	Control-Data-Flow Graph Generation (1)
	Control-Data-Flow Graph Generation (2)
	Control-Flow Graph Examples
	Control-Data-Flow Graph Generation (3)
	Control-Data-Flow Graph Generation (4)
	Control-Data-Flow Graph
	General Behavioral Model of �Control-Data-Flow Graph (1)
	General Behavioral Model of �Control-Data-Flow Graph (2)

