

(参考資料 2014 #2-p.1: 高田) ガス放電管は自己遮断できない。 電荷担体: 自由電子と正孔。

(参考資料 2014 #2-p.2: 高田) 制御理論が重要な訳! システム屋には、パワーデバイスは単なるスイッチ (それが正解)。 リレーを使ってもインバータは出来る。還流ダイオードは必要。

半導体 vs. 金属

半導体: 絶縁体 ⇔ 導体 (可変抵抗)

 $J = q \cdot n \cdot \mu \cdot EF$ (ドリフト電流)

	半導体 (Si)	金属
<mark>n</mark> (cm ⁻³)	0~10 ¹⁴ ,10 ¹⁸	$\approx 10^{22}$
↓ (cm²/Vs)	1,500~100	≤ 50
J (A/cm ²)	≈I00	(温度制限)
J _{max} (A/cm ²)	(≥10,000)	(温度制限)
E.Field(V/cm)	~ 100,000	<<

3

15年1月13日火曜日

(参考資料 2014 #2-p.3: 高田) アボカドロ数(6x10²³cm⁻³)/(原子量/比重)

原子量/比重: Cu=(63.6/8.9), Si=(28/2.3), シリコンの原子密度= 5x10²²cm⁻³

(参考資料 2014 #2-p.4: 高田) (パワーデバイスだからこそ、新たなアイデアが必要だった)

15年1月13日火曜日 (参考資料 2014 #2-p.5: 高田)

質量作用の法則は、(化学反応の)平衡状態で成り立つ。

どちらの密度も、それぞれがボルツマン分布。密度が異なる領域は、電位も異なる。p-nはn⁻-n+よりも 電位差が大きいのみ。

低温特性も測っていた。