2014年前期 無線通信システム

第9回 誤り訂正符号

荒木 純道 <araki@mobile.ee.> 2014年6月18日

	日付	教科書	内容	
第8回	6月11日	4.4	フェージングとダイバーシチ	
第9回	6月18日	4.6	誤り訂正符号	
第10回	6月25日	3.6, 4.5	スペクトル拡散とRAKE受信	
第11回	7月 2日	3.7	直交周波数分割多重(OFDM)	
第12回	7月 9日	6	アクセス制御	
第13回	7月16日	7	IEEE802.11a WLAN	
第14回	7月23日		予備日	
第15回	7月30日		期末試験	
2014年6月18日		8	呉り訂正符号	2

復習

誤り率特件

■フェージング伝搬路における誤り率特性

$$P_{\rm eb}(\gamma) = \frac{1}{2} \operatorname{erfc}(\sqrt{\gamma})$$
 $\overline{P}_{\rm eb}(\overline{\gamma}) = \frac{1}{2} \left(1 - \sqrt{\frac{\overline{\gamma}}{1 + \overline{\gamma}}}\right)$

■ 空間ダイバーシチ(アレー信号処理)

y = hs + n $\hat{s} = \mathbf{w}^H \mathbf{y} = \mathbf{w}^H \mathbf{h} s + \mathbf{w}^H \mathbf{n}$

■ 最大比合成ダイバーシチの特性

次比台版タイハーシナの特性
$$\gamma_{\text{opt}} = \frac{|\mathbf{h}|^2 P}{\sigma^2} = \frac{\sum_{i=1}^{M} |h_i|^2 P}{\sigma^2} = \sum_{i=1}^{M} \gamma_i$$

2014年6月18日

誤り訂正符号

講義内容

- 通信路符号器の構成
- 線形誤り訂正符号
- 畳込み符号
 - トレリス線図
 - 状態遷移と伝達関数
- 硬判定ビタビ復号と誤り率特性
- 軟判定ビタビ復号と誤り率特性
- パンクチュアとイレーサ
- フェージングとインターリーバ
- デモ

2014年6月18日 誤り訂正符号

符号化の種類


メッセージの冗長性を取り除き情報を圧縮するための符号 (e.g. zip, mpeg, etc.)

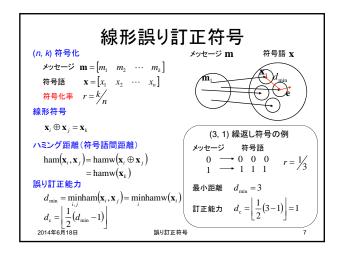
通信路符号化

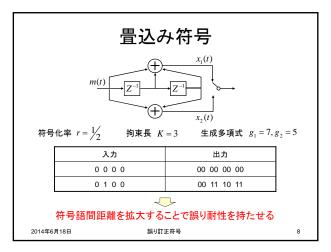
メッセージに冗長性を与え通信による情報誤りを防ぐための符号

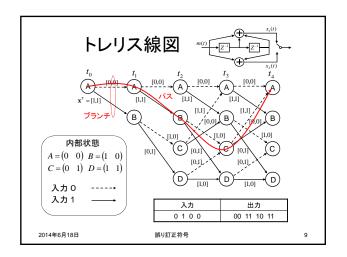
誤り訂正符号

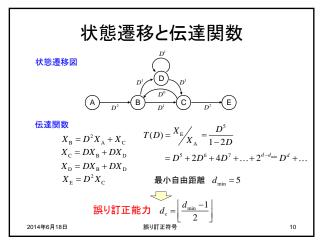
通信路符号器の構成

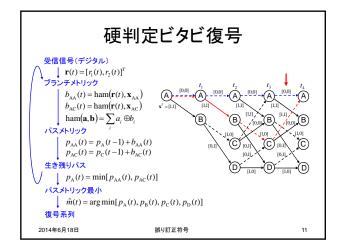
誤り検出符号


受信器において誤り検出するための符号 符号化率(パリティの量)を 誤り検出後、再送制御を行う(ARQ) 通信路の状態に合わせて (e.g. 偶奇パリティ, CRC) 適応的に制御する方法


誤り訂正符号


符号語間距離を拡大することで 誤り訂正能力を持たせるための符号 (e.g. ブロック符号 (Hamming, Read Solomon), 畳込み符号 (CC, Turbo)


インターリーバ


フェージングの落ち込みによる バースト誤りを防ぐための ランダマイザ

