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Goal of supervised learning:                       
From training samples                 ,       
predict outputs of unseen                             
test samples
We always assume

 Is this assumption really true?

Training and test samples are
drawn from the same distribution

Common Assumption
in Supervised Learning
Common Assumption

in Supervised Learning



223Not Always True!Not Always True!
Less women in face dataset than reality.
More criticisms in survey sampling than 

reality.
Sample generation mechanism varies 

over time.

The Yale Face Database B



224Covariate ShiftCovariate Shift
However, no chance for generalization 

if training and test samples have 
nothing in common.

Covariate shift: 
 Input distribution changes

 Functional relation remains unchanged



225Examples of Covariate ShiftExamples of Covariate Shift
(Weak) extrapolation: 

Predict output values outside training region

Training samples

Test samples



226OrganizationOrganization

1. Linear regression under covariate shift
2. Parameter learning
3. Importance estimation
4. Model selection



227Covariate ShiftCovariate Shift

Training samples

Test samples

To illustrate the effect of covariate shift, 
let’s focus on linear extrapolation

True function

Learned function



228Generalization Error
= Bias + Variance

Generalization Error
= Bias + Variance

: expectation over noise

Bias

Variance



229Model SpecificationModel Specification
Model is said to be correctly specified if

 In practice, our model may not be correct.
Therefore, we need a theory for 

misspecified models!



230Ordinary Least-SquaresOrdinary Least-Squares

 If model is correct:
 OLS minimizes bias 

asymptotically
 If model is misspecified:
 OLS does not minimize 

bias even asymptotically. 

We want to reduce bias!



231Law of Large NumbersLaw of Large Numbers
Sample average converges to the 

population mean:

We want to estimate the expectation 
over test input points only using 
training input points .



232Key Trick:
Importance-Weighted Average

Key Trick:
Importance-Weighted Average
 Importance：Ratio of test and training input 

densities

 Importance-weighted average:

(cf. importance sampling)



233Importance-Weighted LSImportance-Weighted LS

Even for misspedified models, 
IWLS minimizes bias 
asymptotically.
We need to estimate 

importance in practice.

:Assumed strictly positive



234OrganizationOrganization

1. Linear regression under covariate shift
2. Parameter learning
3. Importance estimation
4. Model selection



235Importance EstimationImportance Estimation

Assumption: We have training inputs
and test inputs                 .

Naïve approach: Estimate                and        
separately, and take the ratio of 

the density estimates
This does not work well since density 

estimation is hard in high dimensions. 



236Modeling Importance FunctionModeling Importance Function

We use a linear model:

Test density is approximated by

 Idea: Learn             so that              well 
approximates              .



237Kullback-Leibler DivergenceKullback-Leibler Divergence



(constant)

(relevant)



238Learning Importance FunctionLearning Importance Function
Thus

Since                                       is density,
(objective function)

(constraint)



239KLIEP (Kullback-Leibler
Importance Estimation Procedure)

KLIEP (Kullback-Leibler
Importance Estimation Procedure)

Convexity: unique global solution is available
Sparse solution: prediction is fast!
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241Model Selection of KLIEPModel Selection of KLIEP
How to choose tuning parameters (such as 

Gaussian width)?
Likelihood cross-validation:
 Divide test samples                     into      and      .
 Learn importance from      .
 Estimate the likelihood using      .

This gives an unbiased                     
estimate of KL (up to                                   
an irrelevant constant).



242OrganizationOrganization

1. Linear regression under covariate shift
2. Parameter learning
3. Importance estimation
4. Model selection



243Model SelectionModel Selection
Choice of models is crucial:

We want to determine the model so that 
generalization error is minimized:

Polynomial of order 1 Polynomial of order 2 Polynomial of order 3



244Generalization Error EstimationGeneralization Error Estimation

Generalization error is not accessible since   
the target function         is unknown.
 Instead, we use a generalization error estimate.

Model complexity Model complexity



245Cross-ValidationCross-Validation
Divide training samples into     groups.
Train a learning machine with           groups. 
Validate the trained machine using the rest. 
Repeat this for all combinations and output the 

mean validation error.

CV is almost unbiased without covariate shift.
But, CV is heavily biased under covariate shift!

Group 1 Group 2 Group kGroup k-1…

Training Validation



246Importance-Weighted CV (IWCV)Importance-Weighted CV (IWCV)
When testing the classifier in CV process, 

we also importance-weight the test error.
Set 1 Set 2 Set kSet k-1…

Training Testing

IWCV gives almost unbiased estimates of 
generalization error even under covariate shift



247Example of IWCVExample of IWCV

 IWCV gives better estimates of 
generalization error than CV.
Model selection by IWCV outperforms CV!

IWLS+IWCV IWLS+CV LS+IWCV LS+CV
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248SummarySummary
Covariate shift: input distribution varies but 

functional relation remains unchanged
 Importance weighting for adaptation.
 IW least-squares: consistent 
 KLIEP: direct importance estimation
 IW cross-validation: unbiased

Further reading:
Sugiyama & Kawanabe      
Machine Learning                                                       
in Non-Stationary Environments,                               
MIT Press, 2012


