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187(Binary) Classification Problem(Binary) Classification Problem

Output values are              .
We want to predict whether output values of 

unlearned input points are positive or negative.

Multi-class problem can be transferred to 
several binary classification problems:
 One-versus-rest (1vs.2&3, 2vs.1&3, 3vs.1&2)
 One-versus-one (1vs.2, 1vs.3, 2vs.3)



188(Binary) Classification Problem(Binary) Classification Problem
 In classification, we may still use the same 

learning methods, e.g., quadratically-
constrained least-squares:

Prediction:



1890/1-Loss0/1-Loss
 In classification, only the sign of the 

learned function is used.
 It is natural to use 0/1-loss instead of 

squared-loss             :

 corresponds to the number of 
misclassified samples (thus natural).



190Hinge-LossHinge-Loss
However, is non-convex so we may 

not be able to obtain the global minimizer.
Use hinge-loss as an approximation:

: Sample-wise margin



191How to Obtain A SolutionHow to Obtain A Solution

How to deal with “max”?  Use following lemma:

Proof: Constraints are                             ,
so the lemma holds. Q.E.D.

Lemma:



192How to Obtain A Solution (cont.)How to Obtain A Solution (cont.)
So we have

Then            is given as



193Support Vector MachinesSupport Vector Machines
We focus on the following setting: 





Setting                    ,  we have



194Efficient FormulationEfficient Formulation
The SVM solution can be obtained by 

, where

The number of parameters is reduced to   .   
QP standard form:

Proof: Homework!



195SparsenessSparseness

KKT optimality condition implies

Therefore, some      (and thus                also) 
could be zero.



196ExamplesExamples

Gaussian kernel:



197Examples (cont.)Examples (cont.)

Large Small



198ExamplesExamples



199

The way SVMs were introduced today is 
quite different from the original derivation.
Let’s briefly follow the original derivation. 
 Hyper-plane classifier
 VC theory
 Margin maximization
 Soft margin
 Kernel trick

Original Derivation of SVMsOriginal Derivation of SVMs



200Hyper-plane ClassifierHyper-plane Classifier

Separate sample space by hyper-plane.



201

Margin: “Gap” between two classes

MarginMargin

Small margin Large margin Small margin

Margin



202Vapnik-Chevonenkis TheoryVapnik-Chevonenkis Theory
Generalization error:

Empirical error:

Generalization error bound (“VC bound”)

: VC dimension (model complexity)



203Vapnik-Chevonenkis Theory (cont.)Vapnik-Chevonenkis Theory (cont.)
VC bound:

 If samples are linear separable, empirical 
error is zero.

The larger margin is, the smaller VC dim is.

Monotone decreasing with respect to VC dimension                  

In VC theory, maximum 
margin classifier is optimal



204

Separate two classes with 
maximum margin

Optimal Hyper-plane ClassifierOptimal Hyper-plane Classifier

Small margin Large margin Small margin

Margin



205Soft MarginSoft Margin
 If samples are not linearly separable, 

margin cannot be defined.
Allow small error    .



206

Transform samples to a feature space by 
a non-linear mapping .
Then find the maximum margin hyper-

plane in the feature space.

Non-linear ExtensionNon-linear Extension

Feature spaceInput space



207Kernel TrickKernel Trick
Compute inner product in the feature space 

by a kernel function:

Any linear algorithm represented by inner 
product can be non-linearized by kernels
 E.g.: Support vector machine, k-nearest neighbor 

classifier, principal component analysis, linear 
discriminant analysis, k-means clustering, 

E.g., Gaussian kernel



Various Losses for ClassificationVarious Losses for Classification
Hinge loss: Support vector machine
Squared loss: Fisher discriminant analysis
Logistic loss: Logistic regression

Exponential loss: Boosting
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209HomeworkHomework
1. Prove that the solution of SVM,

is given by                               , where

Hint: Use Wolfe dual



210Homework (cont.)Homework (cont.)
Lagrangian:

 :Lagrange multiplier
Wolfe duality:



211HomeworkHomework
2. Prepare a toy binary classification problem 

(say 2-dim input) and test SVM. Then analyze 
the results by varying experimental conditions 
(datasets, kernels, regularization parameter   
etc.). 
Software is available from, e.g., 

http://www.support-vector.net/software.html
You may play with Java implementation, e.g., 

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml



212Mini-Workshop on Data MiningMini-Workshop on Data Mining

On July 15th and 22nd, we will have a mini-
workshop on data mining.
Several students present their own data 

mining results.
Those who give a talk at the workshop will 

have very good grades!



213Mini-Workshop on Data MiningMini-Workshop on Data Mining
Application (just to declare that you want 

to give a presentation) deadline: July 1st.
 Come to me after the class

Presentation: 10-15 minutes (?).
 Specification of your dataset
 Methods used
 Outcome

Slides should be in English.
Better to speak in English, but Japanese 

is also allowed. 



214Notification of 
Final Assignment

Notification of 
Final Assignment

1. Apply supervised learning techniques to 
your data set and analyze it.

 Final report deadline: Aug 1st (Fri.) 17:00
 Bring your report to W8E-404.


