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(Binary) Classification Problent®’

Output values are y; = +1.

We want to predict whether output values of
unlearned input points are positive or negative.

Multi-class problem can be transferred to
several binary classification problems:

e One-versus-rest (1vs.2&3, 2vs.1&3, 3vs.1&2)
e One-versus-one (1vs.2, 1vs.3, 2vs.3)



(Binary) Classification Problent®®

In classification, we may still use the same
learning methods, e.g., quadratically-
constrained least-squares:

agcrs = argmin [Jrs(a) + M Ro, o))
aER®
A(>0)

mn

Jus(@) =) (fal(@:) — i)’
Prediction: =1

y = sign (fa(x))



0/1-Loss 189

n classification, only the sign of the
earned function Is used.

t IS natural to use 0/1-loss instead of
squared-loss Jrs(a):

Jon(a 21 sign(fa(@:)) # )

[0 (a=b
I(“#b)—{1 (a # b)

Jo/1(ax) corresponds to the number of
misclassified samples (thus natural).



Hinge-Loss +90

However, Jj/ () IS NON-convex so we may
not be able to obtain the global minimizer.

Use hinge-loss as an approximation:

n Wi = Jnll@Ba )00
Ji(o) =) max(0,1-u;)  :Sample-wise margin
=1 | | '

5 I

Hinge

oM
4 — Squared

i=1 1

Note y,LQ = ]_, ]_/yz — Y; -3 2 1 0



How to Obtain A Solution ***

dSVM — argmin [JH (a) )\(Ra, Oé>]

o ERY
Zmax (0,1 — uy)

How to deal with “max”? Use foIIowmg lemma:

Lemma:
max (0,1 —u) = rgm]ngﬁ subject to £ > 1 — u
§>0

Proof: Constraints are ¢ > max(0,1 — u),
so the lemma holds. Q.E.D.




How to Obtain A Solution (cont.}?

So we have

Jr (o) = g%i@(l”’g) subject to € > 1,, —u
§>0,

Then asyys IS given as

asyy = argmin [(1,,€) + AM(Ra, o)
aERY EER™
subject to € > 1, —u

§ >0,



Support Vector Machines *°

We focus on the following setting:

cfa Z&Z €T .’L‘@

*R=K K;;=K(ziz;)
Setting A\ = (2C)~ ', we have

PN : 1 ]
agsyy = argmin (C(1,,€) + - (Ka, o)
a,EER™ | 2 i
subject to £ > 1, —u
§ >0,

= fa(®:i)y:



Efficient Formulation 194

The SVM solution can be obtained by
@svuli = [Bsvalivi . where Proof: Homework!

Bsva = argmax Zﬁz — = Z BiBiviy; K j

BeR™

'le

subject to 0,, < 3 § C1l,
The number of parameters is reduced to n.
QP standard form:

1 _ _
min |=(QB3,8) + (B, q>] Qi;=Kijyy; a=—1n
BeR™ | 2 - 0
subject to HB < h H:( Iﬂ”)h:(cfn>



Sparseness 195

KKT optimality condition implies

ﬁz(fz + U; — 1) — O fOI’ all ) U; = f(:cz)y@
Therefore, some 3; (and thus a; = 3;y; also)
could be zero.



196

Examples
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Examples (cont.) 7
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Original Derivation of SVMs 1%

The way SVMs were introduced today Is
quite different from the original derivation.

Let’s briefly follow the original derivation.
e Hyper-plane classifier

e VC theory

e Margin maximization

e Soft margin

e Kernel trick



Hyper-plane Classifier 200

Separate sample space by hyper-plane.

fw(T) = (W, x) +b y = sign( fuw(x))

find w, b
such that y;fw(x;) >1 fori=1,...,n.



Margin 201

Margin: “Gap” between two classes

Margin
L/ ||wl
S

Small margin Large margin Small margin



Vapnik-Chevonenkis Theory %
Generalization error:

// y)dxdy
Empirical error:

R ) = %mez)%y@a

(a = D)
faro={Y (30
Generalization error bound (*VC bound”)

R[ﬂ < Remp[ﬂ + \/i (h <log an + 1) + log%)

with probability 1 — 9

h : VC dimension (model complexity)



Vapnik-Chevonenkis Theory (coit?)
VC bound:

R[ﬂ < Remp[ﬂ —- \/% (h (log 2%2, + 1) + logé)

\ J
Y

Monotone decreasing with respect to VC dimension h (h < n)

If samples are linear separable, empirical

error IS zero. ~
Remp [f] =0

The larger margin is, the smaller VC dim Is.

‘ In VC theory, maximum
margin classifier is optimal




Optimal Hyper-plane Classifief®*

Separate two classes with
maximum margin

Margin 1/HwH
<>

X X g EOO
X X4 : Oo
X = .
X x X 6% oo
I
<4 | o
x "k : %0
Small margin Large margin Small margin
- 2
min ||wl|
w,b

subject to  y;fw(x;) >1 fori=1,...,n.



Soft Margin 205

If samples are not linearly separable,
margin cannot be defined.

Allow small error ¢;.

x (o)

X (o)

xo (o)
X oO

¢
X X O
¢

un Jw|* + CZ&

subJect t0 yz-fw(zc,;,) > |l =&

& >0 forv=1,...,n



Non-linear Extension 206

Transform samples to a feature space by
a non-linear mapping ¢(x).

Then find the maximum margin hyper-
plane in the feature space.

Input space Feature space
m ® o




Kernel Trick 207

Compute inner product in the feature space
by a kernel function:

(@(xi), o(25)) = K(zi, z;)
Ve, x', K(z,z') >0

E.g., Gaussian kernel

K(z,a') = exp (—||e — 2|*/)

Any linear algorithm represented by inner
product can be non-linearized by kernels
e E.g.: Support vector machine, k-nearest neighbor

classifier, principal component analysis, linear
discriminant analysis, k-means clustering,



Various Losses for Classificatioff®

Hinge loss: Support vector machine
Squared loss: Fisher discriminant analysis

Logistic loss: Logistic regression
JLogz’stz’c(a) — Z log (1 + e_ui)
=1
Exponential loss: Boosting 4+

n
JBoost(a) — Z e %
=1

5 _

Squared loss

= = = Logistic loss

+= = Hinge loss
------ Exponential loss
———0/1 loss

Ui = fal(®i)y:




Homework 209

Prove that the solution of SVM,

~ : 1
asyy = argmin |C(1,,§) + = (Ko, o)
o, EER™ 2

subJectt0£>1 —u, £€>0,

Zaz x, ;) fa(mZ)yz
KT’&J — K(w'“ ajj)

IS given by [asy i = [/BSVM],,;y,,;, where

Bsy = argmax Z@, — = Z BiBiyiy; K ;

BeR™

zg 1
subject to 0,, < 3 § C1,
Hint: Use Wolfe dual



Homework (cont.) o4O

Lagrangian:

L(e.&.B.7) = C(1,.8) + 5 (Ko o)

_</67€ U — ]-n) — <'7,€>
3, ~ :Lagrange multiplier

Wolfe duality:
. 1 —
Juin | C{ln, &) +o(Koya)| = max L(ev, €, B,7)
subject to £ > 1, —u subject to 8 > 0, g Al US
£>0, oL oL

9Je" o€




Homework et
Prepare a toy binary classification problem
(say 2-dim input) and test SVM. Then analyze
the results by varying experimental conditions
(datasets, kernels, regularization parameterC
etc.).

e Software Is avallable from, e.qg.,
http://www.support-vector.net/software.html

e You may play with Java implementation, e.g.,
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtmi



Mini-Workshop on Data Mining™*

On July 15" and 22", we will have a mini-
workshop on data mining.

Several students present their own data
mining results.

Those who give a talk at the workshop will
have very good grades!



Mini-Workshop on Data Mining™°

Application (ju

st to declare that you want

to give a presentation) deadline: July 15t
e Come to me after the class
Presentation: 10-15 minutes (?).

e Specification of your dataset
e Methods used

e Outcome
Slides should

Better to spea

e In English.
K In English, but Japanese

IS also allowed.



Notification of 214

Final Assignment

Apply supervised learning technigues to
your data set and analyze it.

Final report deadline: Aug 15t (Fri.) 17:00
Bring your report to W8E-404.



