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Motivating Example (1) 

A certain medical test for a rare disease 
 has a high accuracy: 

● If the disease is present, the test gives  
a positive result 90% of the time 

● If the disease is not present, the test gives a negative 
result 90% of the time 

The disease is quite rare and only 5% of the 
population has the disease 

How likely is the disease if the test result is 
positive? 

●Around 0.9, 0.5,  or 0.3?  
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Motivating Example (2) 

Frequency of the disease in the population 

 

 

 

Frequency of a positive result when the disease is present: 

 
 

Frequency of a negative result when disease is not present 

 

Frequency that the disease occurs when the test gives a 
positive answer: 

P(A) = 5%

P(BjA) = 90%

P( ¹A) = 1¡P(A) = 95%

P( ¹Bj ¹A) = 90% P(Bj ¹A) = 10%

¹A Disease does 
not occur 

A Disease occurs 

¹B Test is negative 

B Test is positive 

P (AjB) 0.9, 0.5,  or 0.3?  
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This can be computed with Bayes’ rule 

 

 

 

Substituting the values in the previous slide gives 

Motivating Example (3) 

Rev. Thomas Bayes, English 
statistician and minister 

P (AjB) =
P (BjA)P (A)

P (BjA)P (A) + P (Bj ¹A)P ( ¹A)

Prior 
Posterior 

P (AjB) =
0:9£ 0:05

0:9£ 0:05 + 0:1£ 0:95
= 32:13%
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Motivating Example (4) 

The result is counterintuitive: much lower than commonly 
expected 
This is due to the low class prior   

 
 

 
 
 

 
Conclusion: When doing inference, it is important to take 
into account the effect of the class prior! 
In this lecture, we will discuss the effect of the class prior 
on classification 
 

P(A) = 5%
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8 Classification 
Training data: 

 

Goal: Learn a rule to classify the labeled and 
unlabeled samples 

 

 

 

 

 

 

According to what criterion should the decision 
boundary be selected? 

Xtr := fx; ygni=1
i:i:d:» p(x; y)

x
y(2 f¡1; 1g)

Feature 

Class label 

i.i.d: Independently and 
identically distributed 

Labeled training data from Unlabeled test data from 

Decision boundary learned from 
labeled samples 

Learned decision boundary 
applied on unlabeled samples 

p(x; y) p(x)
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Risk and Classification (1) 

𝑓(𝒙) is a decision boundary: 

 

Risk defined as 

 

𝑓 𝒙 ≥ 0: Class 1 
𝑓 𝒙 < 0: Class -1 

R(f) = c+p(y = 1)R1(f) + c¡1 [1¡ p(y = 1)]R¡1(f)

1 

`0-1(z) =

½
1 z · 0;
0 otherwise:

z Class prior Misclassification cost 

f: Discriminant 

`0-1(z)

R1(f) =

Z
`0-1(f(x))p(xjy = 1)dx R¡1(f) =

Z
`0-1(¡f(x))p(xjy = ¡1)dx

False Negative Rate False Positive Rate 

`0-1(f(x)) =

½
1 f(x) < 0;

0 f(x) ¸ 0:
`0-1(¡f(x)) =

½
0 f(x) < 0;

1 f(x) ¸ 0:



10 Risk and Classification (2) 

 

 

 

 

Decision boundary should minimize the risk 

 

When 𝑐+ = 𝑐− = 1, risk is the misclassification rate 

What is the optimal 𝑓∗  that minimizes the risk? 

 

f¤ = argmin
f

R(f) R¤ = R(f¤)

p(y = 1)

Z

f(x)<0

p(xjy = 1)dx[1¡ p(y = 1)]

Z

f(x)>0

p(xjy = ¡1)dx

R1(f) =

Z
`0-1(f(x))p(xjy = 1)dx R¡1(f) =

Z
`0-1(¡f(x))p(xjy = ¡1)dx

R(f) = p(y = 1)R1(f) + [1¡ p(y = 1)]R¡1(f)

p(x; y = 1) = p(xjy = 1)p(y = 1)

p(x; y =¡1) = p(xjy =¡1)p(y =¡1)
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Optimal classifier 

When 𝑐+ = 𝑐− = 1, the optimal discriminant is 

 

 

 

 

𝑓(𝑥) is the Bayes-optimal classifier and 
𝑅∗ = 𝑅 𝑓∗  is the Bayes-optimal Risk 

f(x) = sign [p(y = 1jx)¡ p(y =¡1jx)]

p(yjx) = p(xjy)p(y)P
y0 p(xjy0)p(y0)

p(y)

p(xjy)
p(yjx)

Class prior 

Class-conditional density 

Posterior 
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Bayes Risk vs. Class prior 

Recall, Bayes Risk is 

 

 

 

 

 

R¤(¼) = min
f

¼R1(f) + (1¡ ¼)R¡1(f)

We will use the symbol 𝜋 to denote a 
class prior 𝑝 𝑦 = 1  from now on 

Function is concave w.r.t. 𝜋: 
• Minimum of linear 

functions 

¼R1(f0) + (1¡ ¼)R¡1(f0)

¼

R
¤ (
¼
)

R1(f) =

Z
`0-1(f(x)p(xjy = 1)dx R¡1(f) =

Z
`0-1(¡f(x)p(xjy = ¡1)dx

False Negative Rate False Positive Rate 
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Example 

The decision boundary changes when the class 
prior changes 

Bayes risk is dependent on the class prior 

p(y = 1) = 0:1 p(y = 1) = 0:5 p(y = 1) = 0:9
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Conclusion: Section 2 

The misclassification rate is a weighted 
combination of the false negative and false 
positive rate 

● Weighted by the class priors 

The classifier that minimizes the risk is 

 

The optimal risk is a concave function of the class 
prior 

 

f(x) = sign [p(y = 1jx)¡ p(y =¡1jx)]
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Class prior between the training and test data 
differ: 

 

 

 

Example: 

 

 

 

Class-prior Change 

Class priors differ 

pte(x; y) = p(xjy)pte(y)
ptr(y) 6= pte(y)

ptr(x; y) = p(xjy)ptr(y)

p(xjy) Same class-conditional density 

Training distribution Test distribution 



18 
Outline 

1. Motivating Example 

2. Classification and Risk 

3. Class-prior Change 
■Class-prior Change 

■Causes of Class-prior Change 
• Dataset shift 

• Selection Bias 

■ Class-prior Change and Risk 

4. Class-prior Change Mitigation 

5. Class-prior Change Correction 

6. Homework 



19 
Why may the dataset change? 

Dataset shift 

● Natural change in the dataset between training and 
test 

● Example: Face images selected in a laboratory 
compared to the real world 

 

 

 

 

Selection bias (next slide) 

(Olivetti dataset) 

Training dataset: 

Class balance: 
Male: 18/20 
Female: 2/20 
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Selection bias 

Samples drawn for the test dataset may be 
drawn in a biased way 

Selection bias model 

 

 

When s = 1, the sample is in the test set,  
when  s = 0, the sample is not in the test set 

Training distribution: 

Test distribution:  

(x; y; s)
i:i:d:» p(x; y; s)

x
y(2 f¡1; 1g)

Feature 

Class label 

s(2 f0;1g) Selection of samples 

ptr(x; y) = p(x; y)

pte(x; y) = p(x; yjs = 1)
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Selection bias (2) 

Three possibilities: 
1. No selection bias 

𝑠 is independent of 𝑥 and 𝑦  
𝑝 𝑠 = 1 𝑥, 𝑦 = 𝑝(𝑠 = 1) 

No selection bias 

2. Covariate shift 
𝑠 is independent of 𝑦 given 𝑥  

𝑝 𝑠 = 1 𝑥, 𝑦 = 𝑝 𝑠 = 1 𝑥  

3. Class-prior change 
𝑠 is independent of 𝑥 given 𝑦 

𝑝 𝑠 = 1 𝑥, 𝑦 = 𝑝 𝑠 = 1 𝑦  
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Covariate shift 

 𝑝 𝑠 = 1 𝒙, 𝑦 = 𝑝(𝑠 = 1|𝒙) implies that 

 

Proof: 

 

 

 

 

Covariate shift occurs in practice! 

Can be corrected for in the semi-supervised setup 

See lecture 13 

ptr(yjx) = pte(yjx)
pte(yjx) = p(yjx; s = 1) =

p(x; y; s = 1)

p(x; s = 1)

=
p(s = 1jx; y)p(x; y)

p(x; s = 1)

=
p(s = 1jx)p(x; y)

p(x; s = 1)

=
p(s = 1jx)
p(s = 1jx)p(yjx) = ptr(yjx)

pte(x; y) = p(x; yjs = 1)

ptr(x; y) = p(x; y)
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Class-prior Change 

𝑝 𝑠 = 1 𝒙, 𝑦 = 𝑝(𝑠 = 1|𝒚) implies that 

 

Proof: 

 

 

 

Class-prior change may be due to selection bias 

We discuss methods to mitigate the effect of class-
prior change in the supervised setup 

We discuss a correction for class-prior change in the 
semi-supervised setup 

 

 

 

 

 

 

ptr(xjy) = pte(xjy)
pte(xjy) = p(xjy; s = 1) =

p(x; y; s = 1)

p(y; s = 1)

=
p(s = 1jx; y)p(x; y)

p(s = 1jy)p(y)

=
p(s = 1jy)
p(s = 1jy)

p(x; y)

p(y)
= p(xjy)

pte(x; y) = p(x; yjs = 1)

ptr(x; y) = p(x; y)
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Effect of Class-prior Change on Risk 
Training:  

At point 𝜋𝑡𝑟 this is the same as 

When 𝑓𝑡𝑟 is applied to a dataset with class prior 
𝜋𝑡𝑒 the error is 

 

ftr = argmin
f

R (f ;¼tr) R1(ftr) R¡1(ftr)

R¤(¼tr)

¼teR1(f
tr) + (1¡ ¼te)R¡1(f

tr) ¸ min
f

R(¼te)

¼teR1(f
tr) + (1¡¼te)R¡1(f

tr)

R¤(¼)

¼te ¼tr

Excess Error: E
E =R(ftr;¼te)¡R¤(¼te)
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Conclusion: Section 3 

Class-prior change may occur between the 
training and test data: 

 

 

This may be due to dataset shift or sample 
selection bias 

When a classifier is selected according to 𝜋𝑡𝑟 and 
applied on a dataset with 𝜋𝑡𝑒, the Risk is linear 
and tangent to the optimal risk curve at 𝜋𝑡𝑟 

pte(x; y) = p(xjy)pte(y)
ptr(y) 6= pte(y)

ptr(x; y) = p(xjy)ptr(y)
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Class-prior change mitigation 

Class-prior change can have an adverse effect on 
the classification accuracy 

In practice, the test class prior 𝜋𝑡𝑒 is unknown 

● We can therefore not correct for the effect of class-
prior change 

Can we mitigate the effect of class prior change? 

Mitigate (definition): to make less severe 
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Minimax Criterion (1) 

Recall this figure: 

 

 

 

 

 

The black line is the misclassification rate 
according to the new class prior when trained 
with the old class prior  

This line is always tangent to the optimal risk  

R(ftr; ¼) = ¼R1(f
tr) + (1¡¼)R¡1(f

tr)

R¤(¼)

¼te ¼tr

R¤(¼)

Remember: We do not 
know 𝜋𝑡𝑒 
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Minimax Criterion (2) 

Why not select this line so that it does not change 
w.r.t. the new class prior? 

In other words, the tangent should be 0 

Since          is concave, this would occur at the 
maximum 

R¤(¼)

¼tr

True class prior Minimax 

Worst 
case 
error Worst case 

error 
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Further Reading 

The minimax criterion is described in  

● “Pattern Classification”, 2nd Edition (Richard O. Duda, 
Peter E. Hart, David G. Stork), p.g. 26.  
• (Ookayama Main Lib. B1F - Books 548.13/D) 

● “Detection, estimation, and linear modulation theory” 
(Van Trees, Harry L.) 1968 

• Ookayama Main Lib. B1F ; Compact Shelving - Y000998 

● The minimax criterion is discussed, and an extention 
introduced in “Minimax Regret Classifier for Imprecise 
Class Distributions” (Alaiz-Rodríguez, Rocío, Alicia 
Guerrero-Curieses, and Jesús Cid-Sueiro) 
• http://jmlr.org/papers/volume8/alaiz-rodriguez07a/alaiz-rodriguez07a.pdf 

 

 

 

 

http://jmlr.org/papers/volume8/alaiz-rodriguez07a/alaiz-rodriguez07a.pdf
http://jmlr.org/papers/volume8/alaiz-rodriguez07a/alaiz-rodriguez07a.pdf
http://jmlr.org/papers/volume8/alaiz-rodriguez07a/alaiz-rodriguez07a.pdf
http://jmlr.org/papers/volume8/alaiz-rodriguez07a/alaiz-rodriguez07a.pdf
http://jmlr.org/papers/volume8/alaiz-rodriguez07a/alaiz-rodriguez07a.pdf
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Correction for Class-prior change 

Recall that a cost-sensitive classifier minimizes 

 
 

 

Misclassification rate according to 𝜋𝑡𝑒  can be obtained 
by weights: 

 

 

 

Libraries such as libSVM allows specification of cost 

Problem: Test class prior 𝜋𝑡𝑒  is often unknown 

 

R(f) = c+¼trR1(f) + c¡1 [1¡ ¼tr]R¡1(f)

False negative rate False positive rate 

c+ =
¼te

¼tr
c¡ =

1¡ ¼te

1¡ ¼tr
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Semi-supervised setup 

In many situations, unlabeled data in addition to 
labeled data is available 

 

In the class-prior change assumption, the two 
distributions shares a class-conditional density: 

 

We wish to estimate the class prior of the 
unlabeled dataset 

This is difficult, because no labeled samples are 
available 

Xtr := fx; ygni=1
i:i:d:» ptr(x; y) Xte := fxign

0

i=1

i:i:d:» pte(x)

pte(y)

ptr(x; y) = p(xjy) ptr(y) pte(x; y) = p(xjy) pte(y)
Shared Shared 
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Distribution matching framework 

Lets model the test input distribution             in 
terms of: 

● The training class-conditional distribution  

● The test class priors 

 

Problem: Match             to              under some 
divergence 

pte(x)

ptr(xjy)
¼y = pte(y)

qte(x) =

cX

y=1

¼yptr(xjy)

qte(x) pte(x)

ptr(xjy=1) ptr(xjy=2)

pte(x)

pte(x) =

cX

y=1

ptr(xjy)pte(y)

Sicne 𝑝𝑡𝑟(𝑥|𝑦) = 𝑝𝑡𝑒(𝑥|𝑦): 
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39 Distribution Matching via  
𝑳𝟐-distance Minimization 

The similarity between two distributions can be 
measured by the 𝐿2-distance: 

 

 

The class prior can therefore be selected as 

 

The 𝐿2 distance can be estimated by first 
estimating the densities 𝑝𝑡𝑒(𝑥) and 𝑞𝑡𝑒(𝑥) 
● Not good since density estimation is a difficult 

problem 

L2 (pte; qte) =
1

2

Z
[pte(x)¡ qte(x)]

2
dx

(¼1; : : : ; ¼c) = argmin
¼

L2 (pte(x); qte(x))
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Direct 𝑳𝟐 estimation 

Expectations can be estimated via sample 
averages: 

 

 

Can we estimate the 𝐿2-distance in terms of 
sample averages? 

It is possible by obtaining a lower-bound that is 
linear in the densities 

 

Z
f(x)p(x)dx = Ep [f(x)] ¼

1

n

nX

i=1

f(xi) fxigni=1

i:i:d:» p(x)
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Direct 𝑳𝟐 estimation 
We use the following inequality: 

 

Applying this pointwise gives 

 

 

Integrating and selecting the tightest lower-
bound gives 

1

2
[pte(x)¡ qte(x)]

2 ¸ w(x) [pte(x)¡ qte(x)]¡
1

2
w(x)2

1

2

Z
[pte(x)¡ qte(x)]

2
dx

¸ sup
w

Z
w(x) [pte(x)¡ qte(x)] dx¡

1

2

Z
w(x)2dx

1

2
(t¡ y)2 ¸ 0;

1

2
t2 ¸ ty ¡ 1

2
y2

w(x) role of y 
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Direct 𝑳𝟐 estimation 

This lower-bound can then be estimated via 
sample averages 

Lets model 𝑤(𝑥) with a linear model 

 

 

The 𝐿2-distance lower bound can be written in 
terms of expectations 

w(x) =

bX

`=1

®`'`(x) '`(x) = exp

µ
¡ 1

2¾2
kx¡ c`k2

¶

L2(pte; qte) ¸ sup
w

Epte [w(x)]¡
ncX

c=1

E¼ypte [w(x)]¡
1

2

Z
w(x)2dx
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Direct 𝑳𝟐 estimation 

 

 

The expectations can be estimated via sample 
averages: 

 

 

Which gives an objective function of: 

bhte =
1

n

nX

i=1

'(xi) bhc =
1

nc

nX

i=1;yi=c

'(xi)

'(x) = ['1(x) '2(x) : : : '`(x)]

bL2(f¼ygcy=1) ¼ max
®
®>bhte ¡

cX

y=1

µy®
>bhy ¡

1

2
®>H®

H =

Z
'(x)'(x)>dx

L2(pte; qte) ¸ sup
w

Epte [w(x)]¡
ncX

c=1

E¼ypte [w(x)]¡
1

2

Z
w(x)2dx
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Direct 𝑳𝟐 estimation 

Minimizing the 𝐿2 distance estimate w.r.t. 

𝜋𝑦 𝑦=1

𝑐
 gives an estimate of the class prior 

This can then be used to reweight a classifier 
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Example 

Samples from two Gaussians with different 
means: 

 

 

 

 

 

 

 

 

 

The true class prior is 𝑝𝑡𝑒 𝑦 = 1 = 0.3 
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Example (2) 

The 𝐿2-distance estimated from samples is given below: 

 

 

 

 

 

 

 

 

 

Minimum of 𝐿2 distance is near the true class prior 

Difference is due to estimation from a small set l 
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Conclusion: Section 5 

By reweighting the risk, a classifier can be trained 

The reweighting factor depends on the unknown 
class prior 

In a semi-supervised setup, the unknown class 
prior can be estimated 

Estimation is possible by matching a model of the 
test input density to the true test input density 
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Further Reading 

“Adjusting the outputs of a classifier to new a priori 
probabilities: a simple procedure” (Saerens, M., Latinne, P., 
and Decaestecker, C.) 
● Neurocomputation 14 (2002) 
● Introduced estimation of the class prior for re-adjustment of 

the classifier 

“Semi-supervised learning of class balance under class-
prior change by distribution matching.” (du Plessis, M. C. & 
Sugiyama, M.)  
● Estimation of the class prior via Pearson divergence matching 

“Density-difference estimation” (Sugiyama, M., Suzuki, T., 
Kanamori, T., du Plessis, M. C., Liu, S., & Takeuchi, I.) 
● Estimation of the class prior via 𝐿2-distance estimation 

(discussed here) 
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Take-home Message 

The class-prior may change between the training 
and test phase 

In supervised learning, the minimax approach can 
be used: 

● Minimizes the worst case result 

If the test class-prior is known, the classifier can 
be selected by reweighting 

In semi-supervised learning, the test class prior 
can be estimated 
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Homework 

Please hand in your reports now! 

Homework: 

Write you opinion about the special lecture today. 
Directly submit the printed report to the lecturer next 
week. 


