Probabilistic Models for Supervised Learning Logistic Regression & Conditional Random Field

Song Liu song@sg.cs.titech.ac.jp JSPS PD, Sugyiama Lab. Tokyo Institute of Technology Essentially, all models are wrong, but some are useful.

George E. P. Box

Notations

- $x \in \mathbb{R}^p$ p-dimensional covariates, predictive features
- $X \in \mathbb{R}^{p \times n}$, $X = [x_1, x_2, ..., x_n]$ data/design matrix
- $y \in R$ response variable for regression
 - or $y \in \{0,1\}$ response variable for classification
- $\boldsymbol{\beta} \in \mathbb{R}^p$ regression coefficient
- $\epsilon \sim N(0, \sigma^2)$ i.i.d. noise

The Good Old Least Squares...

Objective:

 $\min_{\boldsymbol{\beta}} || \boldsymbol{y} - \boldsymbol{X}^{\mathsf{T}} \boldsymbol{\beta} ||^2$

Data generated by $y = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta} + \boldsymbol{\epsilon}$

Solution: $\boldsymbol{\beta} = (XX^{\top})^{-1}Xy^{\top}$

What is the *probabilistic model* behind?

Before introducing probabilistic *models*, let's first look at probabilistic *algorithms*.

The Maximum Likelihood Estimator (MLE)

- Given samples $\{\mathbf{z}_i\}_{i=1}^n iid \sim p(\mathbf{z})$,
- and a model $p(\boldsymbol{z}|\boldsymbol{\beta})$,
- MLE finds estimates of $m{eta}$.

• Intuitively, maximizing the agreement between the model and observations.

We are interested in p(y|x) in supervised learning...

x is location, building years, number of rooms ..., y is the house price.

The Maximum **Conditional** Likelihood Estimator

- Given samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^n iid \sim p(\mathbf{x}, y),$
- and a model $p(y|\mathbf{x}; \boldsymbol{\beta})$,
 - Note that *x* is behind the bar.
 - *p* is defined on *y* alone.

•
$$\max_{\boldsymbol{\beta}} \frac{1}{n} \sum_{i} \log p(y_i | \boldsymbol{x}_i; \boldsymbol{\beta})$$

• Or you may think x is just another parameter.

The man behind MLE

Sir **Ronald Aylmer Fisher** (17 February 1890 – 29 July 1962) was an English statistician, evolutionary biologist, geneticist, and eugenicist.

Now, let's talk about models.

What if We Combine MLE and Gaussian Density Model?

•
$$p(y|\mathbf{x}; \boldsymbol{\beta}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{||y-x^{\mathsf{T}}\boldsymbol{\beta}||^2}{2\sigma^2}}$$
, σ is known (don't care).

• MLE becomes:

•
$$\max_{\beta} \frac{1}{n} \sum_{i} \log p(y_{i} | \boldsymbol{x}_{i}; \boldsymbol{\beta})$$
 constant
$$= \frac{1}{n} \sum_{i} \log(e^{-\frac{||y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}||^{2}}{2\sigma^{2}}}) - \log\sqrt{2\pi\sigma^{2}}$$
$$= \frac{1}{n} \sum_{i}^{i} - \frac{||y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}||^{2}}{2\sigma^{2}} - \log\sqrt{2\pi\sigma^{2}}$$

Least-squares is MLE + Gaussian density model.

Gauss-Markov Model

Recall, least-squares assumes data are generated by

$$y = x^{\mathsf{T}} \boldsymbol{\beta} + \epsilon$$
, where ϵ i. i. d. ~ $N(0, \sigma^2)$

Least-squares can be fit into a probabilistic Alg. + Model.

What if data are not generated via the above model?

What if data are discrete?

We need a more general paradigm.

Exponential Family (log-linear model)

• A wide range of probabilistic models are similar in definition:

•
$$p(z; \boldsymbol{\theta}) = p_0(z) \exp(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{f}(z) - \log N(\boldsymbol{\theta}))$$

Base measure

Sufficient stats

- $N(\theta) = \int_{Z} p_0(z) \exp(\theta^{T} f(z)) dy$ Normalization function ensures $\int p(z; \theta) dz = 1$
- Examples: Normal, Gamma, Poisson Distribution...
- Such model is sometimes called "log-linear model".

Exponential Family (conditional)

- Conditional densities can also be expressed via Exponential Family model.
- Just use z = (y, x), and normalize w.r.t. y.
- $p(y|\boldsymbol{x}, \boldsymbol{\theta}) = \exp(\boldsymbol{\theta}^{\top} \boldsymbol{f}(y, \boldsymbol{x}) \log N(\boldsymbol{\theta}; \boldsymbol{x}))$

$$N(\boldsymbol{\theta}; \boldsymbol{x}) = \int_{Y} \exp(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{x})) d\boldsymbol{y}$$

Normalization function ensures $\int_{\mathbf{y}} p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta}) d\mathbf{y} = 1$.

Probability Model: 1) Positive, 2) Normalized

Exponential Family (conditional)

- How does Normal distribution fit into this paradigm? (Suppose y, x ∈ R)
- QUIZ: what are f, $\boldsymbol{\theta}$ in this case?

•
$$p(y|\boldsymbol{x};\boldsymbol{\beta}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{||\boldsymbol{y}-\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}||^2}{2\sigma^2}}$$

•
$$p(z; \boldsymbol{\theta}) = p_0(z) \exp(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{f}(z) - g(\boldsymbol{\theta}))$$

•
$$\mathbf{f}(y, x) = \begin{bmatrix} y^2 \\ yx \\ x^2 \end{bmatrix}$$
, $\mathbf{\theta} = \begin{bmatrix} 1/2\sigma^2 \\ \beta/\sigma^2 \\ \beta^2/2\sigma^2 \end{bmatrix}$.

Why Exponential Family?

- Models from Exponential Family are highly expressive (as we will show).
- The resulting optimization problem is **convex**
 - No local optimal!
 - Simple gradient descent will do!

We first extend the such idea to classification problems.

Binary Classification

- Now think about classification problems: $y \in \{0,1\}$.
- y is now binary. We need to know
 - p(y = 1 | x) or 1 p(y = 1 | x)
- Prob. distribution for *binary random variables*?
- Bernoulli Distribution!
 - Bernoulli distribution is "flipping a coin".
 - Imagining "training a smart coin".
 - Multi-class classification?
 - Train a smart dice...

Bernoulli Distribution

- Its prob. <u>mass</u> function is given by:
- $P(z;m) = m^{z}(1-m)^{1-z}, z = \{0,1\}$
- Bernoulli distribution is also a member of Exponential Family.

• Let
$$\theta = \log \frac{m}{1-m}$$

 $P(z; \theta) = \frac{\exp(z \cdot \theta)}{1+\exp(\theta)}$ Normalization term
or $P(z; \theta) = \exp(z \cdot \theta - \log(1 + \exp\theta))$

Logistic Regression

- We need an model of class posterior, i.e.
- $p(y|x, \theta)$, where $y = \{0, 1\}$.
- $P(y|\mathbf{x}, \boldsymbol{\theta}) = \frac{\exp(y \cdot \boldsymbol{\theta}^{\mathsf{T}} \mathbf{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x})}$

Hint: by substituting z = (x, y)

- Again, use MLE algorithm
- $\max_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i} \log p(y_i | \boldsymbol{x}_i, \boldsymbol{\theta}) \\ = \frac{1}{n} \sum_{i} (y_i \cdot \boldsymbol{\theta}^{\top} \boldsymbol{x}_i \log(1 + \exp(\boldsymbol{\theta}^{\top} \boldsymbol{x}_i)))$

The resulting algorithm is called Logistic-Regression.

Logistic Regression, Example p(y=1|x)

Predicting Label Vectors

- What if the label is not a simple binary variable?
- For example:
 - $\boldsymbol{x} \in R^p$, $\boldsymbol{y} \in \{0,1\}^p$
 - *x* and *y* are both vector now.
- Imagine y and x have some structures, say, a graph.

• This setting will bring some interesting applications.

Markov Random Field (MRF)

- The edges in the graph indicates **conditional dependence**.
- For an undirected graph, $G = \langle V, E \rangle$, Z is a set of random variables indexed by V.
- $(A, B) \notin E$, if $A \perp B \mid_{Z \setminus \{A, B\}}$
- Links can be roughly understood as "interactions" between random variables.

Gene Prediction

- A case study: Genetic Coding.
- DNA sequence is a sequence of nucleic acids. "DNA markup" is a string with repeating "A","T","C" and "G", used to represent DNA sequence in text.
- DNA carries "blueprints" of proteins.
- Only some segments of DNA sequence contains "blueprints" for proteins, called **GENEs**.

Gene Prediction

>chromosome:GRCh37:13:32889011:32974405:1 TACCAAGCCCTGCGGAGCAAGGTACCTCACACTTCATGAGCGAGTTAAGATGGGTTTCAC AATTTTTCAAGCAAGGAAACGGGCTCGGAGGTCTTGAACACCTGCTACCCAATAGCAGAA CAGCTACTGGAACTAAAATCCTCTGATTTCAAATAACAGCCCCGCCCACTACCACTAAGT GAAGTCATCCACAACCACCACCGACCACTCTAAGCTTTTGTAAGATCGGCTCGCTTTGG GGAACAGGTCTTGAGAGAGACATCCCCTTTTTAAGGTCAGAACAAAGGTATTTCATAGGTCCC GACTTGGAGTAGGCATAGGGGCGGCCCCCCCCAAGCAGGGTGGCCCTGGGACTCTTAAGGGT GCCTGACTTCCGGGGTGGTGCGTGTGCTGCGTGTCGCGTCACGGCGTCACGTGGCCAGCGC GGGCTTGTGGCGCGAGCTTCTGAAACTAGGCGGCAGAGGCGGAGCCGCTGTGGCACTGCT AGGGGACAGATTTGTGACCGGCGCGCGGTTTTTGTCAGCTTACTCCGGCCAAAAAAGAACTG CACCTCTGGAGCGGGTTAGTGGTGGTGGTAGTGGGTTGGGACGAGCGCGTCTTCCGCAGT CCCAGTCCAGCGTGGCGGGGGGGGGGGCCCCCACGCCCCGGGTCGCCGCCGCGCCTTCTTGCC CTTTTGTCTCTGCCAACCCCCACCCATGCCTGAGAGAAAGGTCCTTGCCCCGAAGGCAGAT TTTCGCCAAGCAAATTCGAGCCCCCGCCCCTTCCCTGGGTCTCCATTTCCCCGCCTCCGGCC CGGCCTTTGGGCTCCGCCTTCAGCTCAAGACTTAACTTCCCCTCCCAGCTGTCCCCAGATGA CGCCATCTGAAATTTCTTGGAAACACGATCACTTTAACGGAATATTGCTGTTTTGGGGGAA ATTCCGAAGACATGCTGATGGGAATTACCAGGCGGCGTTGGTCTCTAACTGGAGCCCTCT

Gene Prediction

• Task: Labelling genes from DNA markups.

The **exact mapping rules** from *X* to *Y* have been unknown to scientists yet, and perhaps is **very complicated**.

- However, expert labelled X and Y pairs are available.
- We can learn a **probabilistic model**!

"Far better an **approximate answer** to the **right** question, which is often vague, than an **exact answer** to the **wrong question**, which can always be made precise."

John Tukey

Another Example

- Part of Speech (POS) Labelling
- YPRONOUNVERBPARTICLELOCATIONXIliveinTokyo.
- Labelling the *lexical properties* in a sentence
- Important for computer to extract key information
- For example, named-entities.
 - Locations, Person Names, Company Names...

Probabilistic Model for Sequences

- Suppose, *Y* is an underlying hidden variable.
 - e.g. Gene label (0: non-gene, 1: gene).
- X is an observed variable, generated from Y.
 - e.g. the DNA sequence, "ATGCG..."
- Given paired samples (x, y), we may learn a model:
 - $p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\beta}).$
- By using such model, given an observed x', we may infer a possible label y'.

Conditional Random Field (CRF)

- In the previous example, X are not linked between each other, and Y are only linked as a **chain**.
- X and Y can have more complicated structures, depending on applications.
- Generally speaking, a probabilistic model $p(y|x;\beta)$ defined on a Markov Random Field on $Z = X \cup Y$, is called **conditional random field**.
 - This model is very suitable for supervised learning.
 - "discriminative model"

- Can we fit CRF into **Exponential Family**?
 - If so, learning CRF would be similar to the learning of earlier models, by using gradient descent.
- YES, we CAN!
 - MRF itself is a member of Exponential Family.
 - The log-linear model of MRF is sometimes called **Gibbs** distribution.

- The exponential family has the following form:
- $p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta}) = \exp(\boldsymbol{\theta}^{\top}\boldsymbol{f}(\boldsymbol{y},\boldsymbol{x}) \log N(\boldsymbol{\theta};\boldsymbol{x}))$
 - The question is, how to design **f**?
 - **f** needs to capture **the intrinsic information** of x and y.
- Can't we define one feature jointly on x and y?
 - Yes, we can! e.g. $\boldsymbol{f}: R^{p \times p} \to R$
- However, y and x are both p dimensional vectors.
 - Design such feature function may be hard.
 - Only a scalar output is not expressive enough.

• For simplicity, we only consider chain shaped CRF:

It is suggested that to use the following *f* for a chain-shaped CRF:

Extract sufficient statistics only on linked pairwise-random variables

- For example, whether the current label position is a named entity depends on
 - Whether the previous word is a Name Suffix("Mr. or Mrs.")?
 - Whether the next word is a Company Suffix("Inc.")
 - Does the current word start with a capital letter ("Tokyo")?

If the labelling is not **position specific**, we can **share parameters**.

Helps when sequences have different lengths!

- We may hand-craft as many feature as we like, and
- let the data speak for itself!

- How to choose *g* heavily depending on applications.
 - CRF provides great flexibility on choosing features!
- However, in the simplest case $g(z_1, z_2) = z_1 \cdot z_2$.

Learning CRF

- Like other supervised learning tasks, we want to learn parameter $\boldsymbol{\theta}$ in the probability model $p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\theta})$.
- Using MLE, we have the following learning objective:

•
$$\max_{\theta} \frac{1}{n} \sum_{i} \log p(y_i | \boldsymbol{x}_i, \theta)$$

$$\theta_1 g_1 \left(y_{t-1}^{(i)}, y_t^{(i)} \right)$$
Sample index is (i)
Position index is t

$$= \frac{1}{n} \sum_{i} \sum_{t} +\theta_2 g_2 \left(y_t^{(i)}, y_{t+1}^{(i)} \right) - \log N(\theta_1, \theta_2, \theta_3, \boldsymbol{x}^{(i)})$$

$$+ \theta_3 g_3(y_t^{(i)}, \boldsymbol{x}_t^{(i)})$$

Note that only 3 parameters need to be estimated. However, what is *N*?

The Pain of Normalization

•
$$N(\theta_1, \theta_2, \theta_3, \mathbf{x}_i) = \theta_1 g_1 \left(y_{t-1}^{(i)}, y_t^{(i)} \right)$$

 $\sum_{\mathbf{y}} \exp \left(\sum_i \sum_t +\theta_2 g_2 \left(y_t^{(i)}, y_{t+1}^{(i)} \right) + \theta_3 g_3 \left(y_t^{(i)}, \mathbf{x}_t^{(i)} \right) \right)$

- *N* is the normalization term that guarantees the probability is summed up to one.
- An unfortunate thing is, the summation is over the entire domain of y.

The Pain of Normalization

- How large is the entire domain of *y*?
- Imagine that y is a sequence of p binary digits, then $y \in \{0,1\}^p$.
- There are 2^p possible configurations of y.
- BTW, the number of atoms in universe is around 2^{256} . 1
- Predict long sequences by using this model is not possible.

The Pain of Normalization

- The solution to this problem is beyond the scope of this class.
- Please refer to the book Daphne & Friedman, 2009, Chapter 20.6 for details.

• D. Koller and N. Friedman (2009). **Probabilistic Graphical Models: Principles and Techniques**. edited by . MIT Press.

Logistic Regression, a Look Back

- Recall the Logistic regression use the model: $P(y|x, \theta) = \frac{\exp(y \cdot \theta^{\top} x)}{1 + \exp(\theta^{\top} x)}$
- Logistic Regression is in fact, a very simple conditional random field, with

•
$$g(x_t, y) = x_t \cdot y$$

Logistic Regression, a Look Back

$$P(y|\boldsymbol{x},\boldsymbol{\theta}) = \frac{\exp(y \cdot \boldsymbol{\theta}^{\top} \boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\top} \boldsymbol{x})}$$

- Note, since the label of logistic regression only take two values, i.e.
 - $y \in \{0,1\}$
- Therefore, it only sums up over two summands, and is no problem in normalization.

Conclusion

- Probabilistic models for supervised learning tasks:
 - Gauss-Markov Model (regression)
 - Logistic Regression (classification)
 - Conditional Random Fields (sequence labelling)
- A unified framework
 - Maximize the conditional likelihood + Probabilistic Models from Exponential Family
 - Highly Expressive
 - Convex

are Maximal Likelihood Estimators of

Posterior Probability

p(Y|X)

Further Readings

- For label predictions using linear models, and their extensions:
- <u>http://www.is.titech.ac.jp/~s-</u> taiji/lecture/dataanalysis/L4.pdf
- •「データ解析」, by Prof. Suzuki, in Japanese.
- For introductions of Conditional Random Field
 - Lafferty et al., 2001,
 - Conditional random fields: Probabilistic models for segmenting and labeling sequence data
 - Daphne & Frideman, 2009
 - Chapter 20.3.2

Further Readings

- For fun reading, anecdotes in statistics.
 - David Salsburg, 2001
 - The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century

Homework

Write you opinion about the special lecture today. Directly submit the printed report to the lecturer next week.