Probabilistic Models for Supervised Learning
 Logistic Regression \& Conditional Random Field

Song Liu

song@sg.cs.titech.ac.jp
JSPS PD, Sugyiama Lab.
Tokyo Institute of Technology

Essentially, all models are wrong, but some are useful.

George E. P. Box

Notations

- $\boldsymbol{x} \in R^{p} p$-dimensional covariates, predictive features
- $\boldsymbol{X} \in R^{p \times n}, \boldsymbol{X}=\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right]$ data/design matrix
- $y \in R$ response variable for regression
- or $y \in\{0,1\}$ response variable for classification
- $\boldsymbol{\beta} \in R^{p}$ regression coefficient
- $\epsilon \sim N\left(0, \sigma^{2}\right)$ i.i.d. noise

The Good Old Least Squares...

Objective:

$\min _{\boldsymbol{\beta}}\left\|\boldsymbol{y}-\boldsymbol{X}^{\top} \boldsymbol{\beta}\right\|^{2}$

Data generated by

$$
y=\boldsymbol{x}^{\top} \boldsymbol{\beta}+\epsilon
$$

Solution:

$$
\boldsymbol{\beta}=\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{X} \boldsymbol{y}^{\top}
$$

What is the probabilistic model behind?

Before introducing probabilistic models, let's first look at probabilistic algorithms.

The Maximum Likelihood

 Estimator (MLE)- Given samples $\left\{\mathbf{z}_{i}\right\}_{i=1}^{n} i i d \sim p(\mathbf{z})$,
- and a model $p(\mathbf{z} \mid \boldsymbol{\beta})$,
- MLE finds estimates of $\boldsymbol{\beta}$.
- $\max _{\boldsymbol{\beta}} \frac{1}{n} \sum_{i} \log p\left(\boldsymbol{z}_{i} \mid \boldsymbol{\beta}\right)$
- Intuitively, maximizing the agreement
 between the model and observations.

We are interested in $p(y \mid \boldsymbol{x})$ in supervised learning...

\boldsymbol{x} is location, building years, number of rooms \ldots, y is the house price.

The Maximum Conditional

Likelihood Estimator

- Given samples $\left\{\left(\boldsymbol{x}_{\boldsymbol{i}}, y_{i}\right)\right\}_{i=1}^{n} i i d \sim p(\boldsymbol{x}, y)$,
- and a model $p(y \mid \boldsymbol{x} ; \boldsymbol{\beta})$,
- Note that \boldsymbol{x} is behind the bar.
- p is defined on y alone.
- $\max _{\boldsymbol{\beta}} \frac{1}{n} \sum_{i} \log p\left(y_{i} \mid x_{i} ; \boldsymbol{\beta}\right)$
- Or you may think x is just another parameter.

The man behind MLE

Sir Ronald Aylmer Fisher (17 February 1890-29 July 1962) was an English statistician, evolutionary biologist, geneticist, and eugenicist.

Now, let's talk about models.

What if We Combine MLE and Gaussian Density Model?

- $p(y \mid x ; \boldsymbol{\beta})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\frac{\left\|\boldsymbol{y}-\boldsymbol{x}^{\top} \boldsymbol{\beta}\right\|^{2}}{2 \sigma^{2}}}, \sigma$ is known (don't care).
- MLE becomes:
- $\max _{\boldsymbol{\beta}} \frac{1}{n} \sum_{i} \log p\left(y_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{\beta}\right)$

$$
\begin{aligned}
& =\frac{1}{n} \sum_{i} \log \left(e^{-\frac{\left\|y_{i}-x_{i}^{\top} \boldsymbol{\beta}\right\|^{2}}{2 \sigma^{2}}}\right)-\log \sqrt{2 \pi \sigma^{2}} \\
& =\frac{1}{n} \sum_{i}-\frac{\left\|y_{i}-\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right\|^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi \sigma^{2}}
\end{aligned}
$$

Least-squares is MLE + Gaussian density model.

Gauss-Markov Model

Recall, least-squares assumes data are generated by

$$
y=\boldsymbol{x}^{\top} \boldsymbol{\beta}+\epsilon, \text { where } \epsilon \text { i. i. d. } \sim N\left(0, \sigma^{2}\right)
$$

Least-squares can be fit into a probabilistic Alg. + Model.

What if data are not generated via the above model?
What if data are discrete?
We need a more general paradigm.

Exponential Family (log-linear model)

- A wide range of probabilistic models are similar in definition:
- $p(z ; \boldsymbol{\theta})=\underset{\text { Base measure }}{p_{0}(z)} \exp \left(\boldsymbol{\theta}^{\top} \underset{\text { Sufficient stats }}{\boldsymbol{f}(z)}-\log N(\boldsymbol{\theta})\right)$
- $N(\boldsymbol{\theta})=\int_{Z} p_{0}(z) \exp \left(\boldsymbol{\theta}^{\top} \boldsymbol{f}(z)\right) d y$

Normalization function ensures $\int p(z ; \theta) d z=1$

- Examples: Normal, Gamma, Poisson Distribution...
- Such model is sometimes called "log-linear model".

Exponential Family (conditional)

- Conditional densities can also be expressed via Exponential Family model.
- Just use $z=(y, x)$, and normalize w.r.t. y.
- $p(y \mid \boldsymbol{x}, \boldsymbol{\theta})=\exp \left(\boldsymbol{\theta}^{\top} \boldsymbol{f}(y, \boldsymbol{x})-\log N(\boldsymbol{\theta} ; \boldsymbol{x})\right)$

$$
N(\boldsymbol{\theta} ; \boldsymbol{x})=\int_{Y} \exp \left(\boldsymbol{\theta}^{\top} \boldsymbol{f}(y, \boldsymbol{x})\right) d y
$$

Normalization function ensures $\int_{Y} p(y \mid \boldsymbol{x}, \boldsymbol{\theta}) d y=1$.
Probability Model: 1) Positive, 2) Normalized

Exponential Family (conditional)

- How does Normal distribution fit into this paradigm? (Suppose $y, x \in R$)
- QUIZ: what are $f, \boldsymbol{\theta}$ in this case?
- $p(y \mid \boldsymbol{x} ; \boldsymbol{\beta})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\frac{\left\|y-\boldsymbol{x}^{\top} \boldsymbol{\beta}\right\|^{2}}{2 \sigma^{2}}}$
- $p(z ; \boldsymbol{\theta})=p_{0}(z) \exp \left(\boldsymbol{\theta}^{\top} \boldsymbol{f}(z)-g(\boldsymbol{\theta})\right)$
$\boldsymbol{f}(y, x)=\left[\begin{array}{l}y^{2} \\ y x \\ x^{2}\end{array}\right], \boldsymbol{\theta}=\left[\begin{array}{c}1 / 2 \sigma^{2} \\ \beta / \sigma^{2} \\ \beta^{2} / 2 \sigma^{2}\end{array}\right]$

Why Exponential Family?

- Models from Exponential Family are highly expressive (as we will show).
- The resulting optimization problem is convex
- No local optimal!
- Simple gradient descent will do!

We first extend the such idea to classification problems.

Binary Classification

- Now think about classification problems: $y \in\{0,1\}$.
- y is now binary. We need to know
- $p(y=1 \mid x)$ or $1-p(y=1 \mid x)$
- Prob. distribution for binary random variables?
- Bernoulli Distribution!
- Bernoulli distribution is "flipping a coin".
- Imagining "training a smart coin".
- Multi-class classification?
- Train a smart dice...

Bernoulli Distribution

- Its prob. mass function is given by:
- $P(z ; m)=m^{z}(1-m)^{1-z}, z=\{0,1\}$
- Bernoulli distribution is also a member of Exponential Family.

$$
\text { - Let } \theta=\log \frac{m}{1-m}
$$

- $P(z ; \theta)=\frac{\exp (z \cdot \theta)}{1+\exp (\theta)}$

Normalization term

- $\operatorname{or} P(z ; \theta)=\exp (z \cdot \theta-\log (1+\exp \theta))$

Logistic Regression

- We need an model of class posterior, i.e.
- $p(y \mid x, \boldsymbol{\theta})$, where $y=\{0,1\}$.
- $P(y \mid x, \boldsymbol{\theta})=\frac{\exp \left(y \cdot \boldsymbol{\theta}^{\top} x\right)}{1+\exp \left(\boldsymbol{\theta}^{\top} x\right)}$

Hint: by substituting $z=(\boldsymbol{x}, y)$

- Again, use MLE algorithm
- $\max _{\boldsymbol{\theta}} \frac{1}{n} \sum_{i} \log p\left(y_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}\right)$

$$
=\frac{1}{n} \sum_{i}\left(y_{i} \cdot \boldsymbol{\theta}^{\top} \boldsymbol{x}_{i}-\log \left(1+\exp \left(\boldsymbol{\theta}^{\top} \boldsymbol{x}_{i}\right)\right)\right)
$$

The resulting algorithm is called Logistic-Regression.

Logistic Regression, Example
 $p(y=1 \mid x)$

Predicting Label Vectors

-What if the label is not a simple binary variable?

- For example:
- $\boldsymbol{x} \in R^{p}, \boldsymbol{y} \in\{0,1\}^{p}$
- \boldsymbol{x} and \boldsymbol{y} are both vector now.
- Imagine \boldsymbol{y} and \boldsymbol{x} have some structures, say, a graph.

- This setting will bring some interesting applications.

Markov Random Field (MRF)

- The edges in the graph indicates conditional dependence.
- For an undirected graph, $G=<V, E>, Z$ is a set of random variables indexed by V.
- $(A, B) \notin E$, if $\left.A \perp B\right|_{Z \backslash\{A, B\}}$
- Links can be roughly understood as "interactions" between random variables.

Gene Prediction

- A case study: Genetic Coding.
- DNA sequence is a sequence of nucleic acids. "DNA markup" is a string with repeating " A "," T "," C " and " G ", used to represent DNA sequence in text.
- DNA carries "blueprints" of proteins.
- Only some segments of DNA sequence contains "blueprints" for proteins, called GENEs.

Gene Prediction

>chromosome: GRCh37:13:32889011:32974405:1
TACCAAGCCCTGCGGAGCAAGGTACCTCACACTTCATGAGCGAGTTAAGATGGGTTTCAC AATTTTTCAAGCAAGGAAACGGGCTCGGAGGTCTTGAACACCTGCTACCCAATAGCAGAA CAGCTACTGGAACTAAAATCCTCTGATTTCAAATAACAGCCCCGCCCACTACCACTAAGT GAAGTCATCCACAACCACACACCGACCACTCTAAGCTTTTGTAAGATCGGCTCGCTTTGG GGAACAGGTCTTGAGAGAACATCCCTTTTAAGGTCAGAACAAAGGTATTTCATAGGTCCC AGGTCGTGTCCCGAGGGCGCCCACCCAAACATGAGCTGGAGCAAAAAGAAAGGGATGGGG GACTTGGAGTAGGCATAGGGGCGGCCCCTCCAAGCAGGGTGGCCTGGGACTCTTAAGGGT CAGCGAGAAGAGAACACACACTCCAGCTCCCGCTTTATTCGGTCAGATACTGACGGTTGG GATGCCTGACAAGGAATTTCCTTTCGCCACACTGAGAAATACCCGCAGCGGCCCACCCAG GCCTGACTTCCGGGTGGTGCGTGTGCTGCGTGTCGCGTCACGGCGTCACGTGGCCAGCGC GGGCTTGTGGCGCGAGCTTCTGAAACTAGGCGGCAGAGGCGGAGCCGCTGTGGCACTGCT GCGCCTCTGCTGCGCCTCGGGTGTCTTTTGCGGCGGTGGGTCGCCGCCGGGAGAAGCGTG AGGGGACAGATTTGTGACCGGCGCGGTTTTTGTCAGCTTACTCCGGCCAAAAAAGAACTG CACCTCTGGAGCGGGTTAGTGGTGGTGGTAGTGGGTTGGGACGAGCGCGTCTTCCGCAGT CCCAGTCCAGCGTGGCGGGGGAGCGCCTCACGCCCCGGGTCGCTGCCGCGGCTTCTTGCC CTTTTGTCTCTGCCAACCCCCACCCATGCCTGAGAGAAAGGTCCTTGCCCGAAGGCAGAT TTTCGCCAAGCAAATTCGAGCCCCGCCCCTTCCCTGGGTCTCCATTTCCCGCCTCCGGCC CGGCCTTTGGGCTCCGCCTTCAGCTCAAGACTTAACTTCCCTCCCAGCTGTCCCAGATGA CGCCATCTGAAATTTCTTGGAAACACGATCACTTTAACGGAATATTGCTGTTTTGGGGAA GTGTTTTACAGCTGCTGGGCACGCTGTATTTGCCTTACTTAAGCCCCTGGTAATTGCTGT ATTCCGAAGACATGCTGATGGGAATTACCAGGCGGCGTTGGTCTCTAACTGGAGCCCTCT

Gene Prediction

- Task: Labelling genes from DNA markups.

The exact mapping rules from X to Y have been unknown to scientists yet, and perhaps is very complicated.

- However, expert labelled X and Y pairs are available.
- We can learn a probabilistic mode!!
"Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise."

John Tukey

Another Example

- Part of Speech (POS) Labelling
Y pronoun verb particle location
X I live in Tokyo.
- Labelling the lexical properties in a sentence
- Important for computer to extract key information
- For example, named-entities.
- Locations, Person Names, Company Names...

Probabilistic Model for Sequences

- Suppose, Y is an underlying hidden variable.
- e.g. Gene label (0 : non-gene, 1 : gene).
- X is an observed variable, generated from Y.
- e.g. the DNA sequence, "ATGCG..."
- Given paired samples ($\boldsymbol{x}, \boldsymbol{y}$), we may learn a model:
- $p(\boldsymbol{y} \mid \boldsymbol{x} ; \beta)$.
- By using such model, given an observed \boldsymbol{x}^{\prime}, we may infer a possible label \boldsymbol{y}^{\prime}.

Conditional Random Field (CRF)

- In the previous example, X are not linked between each other, and Y are only linked as a chain.
- X and Y can have more complicated structures, depending on applications.
- Generally speaking, a probabilistic model $p(\boldsymbol{y} \mid \boldsymbol{x} ; \beta)$ defined on a Markov Random Field on $Z=X \cup Y$, is called conditional random field.
- This model is very suitable for supervised learning.
- "discriminative model"

Modelling CRF

- Can we fit CRF into Exponential Family?
- If so, learning CRF would be similar to the learning of earlier models, by using gradient descent.
- YES, we CAN!
- MRF itself is a member of Exponential Family.
- The log-linear model of MRF is sometimes called Gibbs distribution.

Modelling CRF

- The exponential family has the following form:
- $p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta})=\exp \left(\boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{x})-\log N(\boldsymbol{\theta} ; \boldsymbol{x})\right)$
- The question is, how to design \boldsymbol{f} ?
- \boldsymbol{f} needs to capture the intrinsic information of x and y.
- Can't we define one feature jointly on \boldsymbol{x} and \boldsymbol{y} ?
- Yes, we can! e.g. $\boldsymbol{f}: R^{p \times p} \rightarrow R$
- However, \boldsymbol{y} and \boldsymbol{x} are both p dimensional vectors.
- Design such feature function may be hard.
- Only a scalar output is not expressive enough.

Modelling CRF

- For simplicity, we only consider chain shaped CRF:

- It is suggested that to use the following \boldsymbol{f} for a chain-shaped CRF:

Modelling CRF

Extract sufficient statistics only on linked pairwise-random variables
g_{1} : backward information
g_{2} : forward information
g_{3} : observational information

- For example, whether the current label position is a named entity depends on
- Whether the previous word is a Name Suffix("Mr. or Mrs.") ?
- Whether the next word is a Company Suffix("Inc.")
- Does the current word start with a capital letter ("Tokyo")?

Modelling CRF

"weights of
features"

\theta_{2}

\theta_{3}

···

\theta_{1}

\theta_{2}

\theta_{3}

···

\theta_{1}

0

\theta_{3}\end{array}\right], \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\left[$$
\begin{array}{c}0 \\
g_{2}\left(y_{2}, y_{1}\right) \\
g_{3}\left(x_{1}, y_{1}\right) \\
\ldots \\
g_{1}\left(y_{i-1}, y_{i}\right) \\
g_{2}\left(y_{i}, y_{i+1}\right) \\
g_{3}\left(x_{i}, y_{i}\right) \\
\cdots \\
g_{1}\left(y_{p-1}, y_{p}\right) \\
0 \\
g_{3}\left(x_{p}, y_{p}\right)\end{array}
$$\right]\)

If the labelling is not position specific,
 we can share parameters.

- We may hand-craft as many feature as we like, and
- let the data speak for itself!

Modelling CRF

- How to choose g heavily depending on applications.
- CRF provides great flexibility on choosing features!
- However, in the simplest case $g\left(z_{1}, z_{2}\right)=z_{1} \cdot z_{2}$.

Learning CRF

- Like other supervised learning tasks, we want to learn parameter $\boldsymbol{\theta}$ in the probability model $p(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})$.
- Using MLE, we have the following learning objective:
- $\max _{\boldsymbol{\theta}} \frac{1}{n} \sum_{i} \log p\left(y_{i} \mid x_{i}, \theta\right)$ $\theta_{1} g_{1}\left(y_{t-1}^{(i)}, y_{t}^{(i)}\right)$

Sample index is (i)
Position index is t
$\begin{aligned}=\frac{1}{n} \sum_{i} \sum_{t} & +\theta_{2} g_{2}\left(y_{t}^{(i)}, y_{t+1}^{(i)}\right)-\log N\left(\theta_{1}, \theta_{2}, \theta_{3}, \boldsymbol{x}^{(i)}\right) \\ & +\theta_{3} g_{3}\left(y_{t}^{(i)}, x_{t}^{(i)}\right)\end{aligned}$
Note that only 3 parameters need to be estimated. However, what is N ?

The Pain of Normalization

- $N\left(\theta_{1}, \theta_{2}, \theta_{3}, \boldsymbol{x}_{\boldsymbol{i}}\right)=$

$$
\sum_{y} \exp \left(\begin{array}{c}
\left(\theta_{1}, \theta_{2}, \theta_{3}, x_{i}\right)= \\
\theta_{1} g_{1}\left(y_{t-1}^{(i)}, y_{t}^{(i)}\right) \\
\sum_{i} \sum_{t}+\theta_{2} g_{2}\left(y_{t}^{(i)}, y_{t+1}^{(i)}\right) \\
+\theta_{3} g_{3}\left(y_{t}^{(i)}, x_{t}^{(i)}\right)
\end{array}\right)
$$

- N is the normalization term that guarantees the probability is summed up to one.
- An unfortunate thing is, the summation is over the entire domain of y.

The Pain of Normalization

- How large is the entire domain of \boldsymbol{y} ?
- Imagine that \boldsymbol{y} is a sequence of p binary digits, then $y \in\{0,1\}^{p}$.
- There are 2^{p} possible configurations of \boldsymbol{y}.
- BTW, the number of atoms in universe is around $2^{256.1}$
- Predict long sequences by using this model is not possible.

The Pain of Normalization

- The solution to this problem is beyond the scope of this class.
- Please refer to the book Daphne \& Friedman, 2009, Chapter 20.6 for details.
- D. Koller and N. Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. edited by . MIT Press.

Logistic Regression, a Look Back

- Recall the Logistic regression use the model:

$$
P(y \mid \boldsymbol{x}, \boldsymbol{\theta})=\frac{\exp \left(y \cdot \boldsymbol{\theta}^{\top} \boldsymbol{x}\right)}{1+\exp \left(\boldsymbol{\theta}^{\top} \boldsymbol{x}\right)}
$$

- Logistic Regression is in fact, a very simple conditional random field, with
- $g\left(x_{t}, y\right)=x_{t} \cdot y$

Logistic Regression, a Look Back

$$
P(y \mid x, \boldsymbol{\theta})=\frac{\exp \left(y \cdot \boldsymbol{\theta}^{\top} \boldsymbol{x}\right)}{1+\exp \left(\boldsymbol{\theta}^{\top} \boldsymbol{x}\right)}
$$

- Note, since the label of logistic regression only take two values, i.e.
- $y \in\{0,1\}$
- Therefore, it only sums up over two summands, and is no problem in normalization.

Conclusion

- Probabilistic models for supervised learning tasks:
- Gauss-Markov Model (regression)
- Logistic Regression (classification)
- Conditional Random Fields (sequence labelling)
- A unified framework
- Maximize the conditional likelihood + Probabilistic Models from Exponential Family
- Highly Expressive
- Convex

Take-home Messages:

Least
 Squares

Logistic
Regression

are Maximal Likelihood Estimators of

Posterior
Probability
$p(Y \mid X)$

Further Readings

－For label predictions using linear models，and their extensions：
－http：／／www．is．titech．ac．jp／～s－ taiji／lecture／dataanalysis／L4．pdf
－「データ解析」，by Prof．Suzuki，in Japanese．
－For introductions of Conditional Random Field
－Lafferty et al．，2001，
－Conditional random fields：Probabilistic models for segmenting and labeling sequence data
－Daphne \＆Frideman， 2009
－Chapter 20．3．2

Further Readings

- For fun reading, anecdotes in statistics.
- David Salsburg, 2001
- The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century

Homework

Write you opinion about the special lecture today.
Directly submit the printed report to the lecturer next week.

