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Essentially, all models are wrong, 
but some are useful.

George E. P. Box



Notations

• 𝒙 ∈ 𝑅𝑝 𝑝-dimensional covariates, predictive features

• 𝑿 ∈ 𝑅𝑝×𝑛 , 𝑿 = [𝒙1, 𝒙2, … , 𝒙𝑛] data/design matrix

• 𝑦 ∈ 𝑅 response variable for regression
• or 𝑦 ∈ 0,1 response variable for classification 

• 𝜷 ∈ 𝑅𝑝 regression coefficient

• 𝜖 ~ 𝑁(0, 𝜎2) i.i.d. noise 



The Good Old Least Squares…
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𝑦 = 𝒙⊤𝜷 + 𝜖

Data generated by

Solution:

Objective:

min
𝜷
|| 𝒚 − 𝑿⊤𝜷||2

𝜷 = 𝑿𝑿⊤ −1𝑿𝒚⊤

What is the probabilistic model behind?



Before introducing probabilistic models, 
let’s first look at probabilistic algorithms.



The Maximum Likelihood 
Estimator (MLE)
• Given samples 𝒛𝑖 𝑖=1

𝑛 𝑖𝑖𝑑~ 𝑝(𝒛) , 

• and a model 𝑝(𝒛|𝜷),

• MLE finds estimates of 𝜷.

•max
𝜷

1

𝑛
 𝑖 log 𝑝(𝒛𝑖|𝜷)

• Intuitively, maximizing the agreement
between the model and observations. 



We are interested in 𝑝(𝑦|𝒙) in 
supervised learning…

𝒙 is location, building years, number of rooms … , 𝑦 is the house price.

𝒙

𝑦
𝒙1

𝒙2



The Maximum Conditional
Likelihood Estimator
• Given samples (𝒙𝒊, 𝑦𝑖) 𝑖=1

𝑛 𝑖𝑖𝑑~ 𝑝(𝒙, 𝑦),

• and a model 𝑝(𝑦|𝒙; 𝜷),
• Note that 𝒙 is behind the bar.

• 𝑝 is defined on 𝑦 alone.

•max
𝜷

1

𝑛
 𝑖 log 𝑝 𝑦𝑖 𝒙𝑖; 𝜷)

• Or you may think 𝑥 is just another parameter. 



The man behind MLE

Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 
1962) was an English statistician, evolutionary 
biologist, geneticist, and eugenicist.



Now, let’s talk about models. 



What if We Combine MLE and 
Gaussian Density Model?

• 𝑝 𝑦 𝒙; 𝜷 =
1

2𝜋𝜎2
e
−
|| 𝑦−𝒙⊤𝜷||2

2𝜎2 , 𝜎 is known (don’t 

care). 

• MLE becomes:

• max
𝜷

1

𝑛
 𝑖 log 𝑝 𝑦𝑖 𝒙𝑖; 𝜷)

=
1

𝑛
 

𝑖

log(𝑒
−
|| 𝑦𝑖−𝒙𝑖

⊤𝜷||2

2𝜎2 ) − log 2𝜋𝜎2

=
1

𝑛
 

𝑖

−
|| 𝑦𝑖 − 𝒙𝑖

⊤𝜷||2

2𝜎2
− log 2𝜋𝜎2

constant

Least-squares is MLE + Gaussian density model. 



Recall, least-squares assumes data are generated by 

Least-squares can be fit into a probabilistic Alg. + Model. 

𝑦 = 𝒙⊤𝜷 + 𝜖, where 𝜖 i. i. d. ~ 𝑁(0, 𝜎2)

Gauss-Markov Model

What if data are not generated via the above model?

What if data are discrete?

We need a more general paradigm.



Exponential Family (log-linear 
model)
• A wide range of probabilistic models are similar in 

definition:

• 𝑝 𝑧; 𝜽 = 𝑝0(𝑧) exp(𝜽
⊤𝒇 𝑧 − log𝑁(𝜽))

•𝑁 𝜽 =  𝑍 𝑝0 𝑧 exp 𝜽
⊤𝒇 𝑧 𝑑𝑦

• Examples: Normal, Gamma, Poisson Distribution… 

• Such model is sometimes called “log-linear model”. 

Base measure Sufficient stats

Normalization function ensures  𝑝 𝑧; 𝜃 𝑑𝑧 = 1



Exponential Family (conditional)

• Conditional densities can also be expressed via 
Exponential Family model. 

• Just use 𝑧 = 𝑦, 𝒙 , and normalize w.r.t. 𝒚.

• 𝑝 𝑦|𝒙, 𝜽 = exp(𝜽⊤𝒇 𝑦, 𝒙 − log 𝑁(𝜽; 𝒙))

𝑁 𝜽; 𝒙 =  
𝑌

exp 𝜽⊤𝒇 𝑦, 𝒙 𝑑𝑦

Normalization function ensures  𝑌 𝑝 𝑦|𝒙, 𝜽 𝑑𝑦 = 1 .

Probability Model: 1) Positive, 2) Normalized



Exponential Family (conditional)

• How does Normal distribution fit into this paradigm? 
(Suppose 𝑦, 𝑥 ∈ 𝑅)

• QUIZ: what are 𝑓, 𝜽 in this case?

• 𝑝 𝑦 𝒙; 𝜷 =
1

2𝜋𝜎2
e
−
|| 𝑦−𝒙⊤𝜷||2

2𝜎2

• 𝑝 𝑧; 𝜽 = 𝑝0(𝑧) exp(𝜽
⊤𝒇 𝑧 − 𝑔(𝜽))

• 𝒇 𝑦, 𝑥 =
𝑦2

𝑦𝑥

𝑥2
, 𝜽 =

1/2𝜎2

𝛽/𝜎2

𝛽2/2𝜎2
.



Why Exponential Family?

• Models from Exponential Family are highly 
expressive (as we will show).

• The resulting optimization problem is convex
• No local optimal!

• Simple gradient descent will do!



We first extend the such idea to classification 
problems.



Binary Classification

• Now think about classification problems: 𝑦 ∈ {0,1}.

• 𝑦 is now binary. We need to know
• 𝑝 𝑦 = 1 𝒙 or 1 − 𝑝 𝑦 = 1 𝒙

• Prob. distribution for binary random variables?

• Bernoulli Distribution!
• Bernoulli distribution is “flipping a coin”. 

• Imagining “training a smart coin”. 

• Multi-class classification?

• Train a smart dice…



Bernoulli Distribution

• Its prob. mass function is given by:

• 𝑃 𝑧;𝑚 = 𝑚𝑧 1 − 𝑚 1−𝑧, 𝑧 = 0,1

• Bernoulli distribution is also a member of 
Exponential Family. 

• Let 𝜃 = log
𝑚

1−𝑚

• 𝑃 𝑧; 𝜃 =
exp(𝑧⋅𝜃)

1+exp(𝜃)

• or 𝑃 𝑧; 𝜃 = exp(𝑧 ⋅ 𝜃 − log(1 + exp 𝜃))

Normalization term



Logistic Regression

• We need an model of class posterior, i.e. 

• 𝑝 𝑦 𝒙, 𝜽 , where 𝑦 = 0,1 .

• 𝑃 𝑦|𝒙, 𝜽 =
exp(𝑦⋅𝜽⊤𝒙)

1+exp(𝜽⊤𝒙)

• Again, use MLE algorithm

• max
𝜽

1

𝑛
 𝑖 log 𝑝 𝑦𝑖 𝒙𝑖 , 𝜽)

=
1

𝑛
 𝑖 𝑦𝑖 ⋅ 𝜽

⊤𝒙𝑖 − log 1 + exp 𝜽
⊤𝒙𝑖

The resulting algorithm is called Logistic-Regression. 

Hint: by substituting 𝑧 = (𝒙, 𝑦)



Logistic Regression, Example



Predicting Label Vectors

• What if the label is not a simple binary variable?

• For example:

• 𝒙 ∈ 𝑅𝑝, 𝒚 ∈ 0,1 𝑝

• 𝒙 and 𝒚 are both vector now. 

• Imagine 𝒚 and 𝒙 have some structures, say, a graph. 

• This setting will bring some interesting applications. 

𝑌1 𝑌2 𝑌3 𝑌4

𝑋1 𝑋2 𝑋3 𝑋4𝑋

𝑌



Markov Random Field (MRF)

• The edges in the graph indicates conditional 
dependence. 

• For an undirected graph, 𝐺 = < 𝑉, 𝐸 >, 𝑍 is a set of 
random variables indexed by 𝑉. 

• 𝐴, 𝐵 ∉ 𝐸, if 𝐴⊥𝐵 |𝑍\{𝐴,𝐵}
• Links can be roughly understood as “interactions” 

between random variables. 

𝑦1 𝑦2 𝑦3 𝑦4

𝑥1 𝑥2 𝑥3 𝑥4𝑋

𝑌



Gene Prediction

• A case study: Genetic Coding. 

• DNA sequence is a sequence of nucleic acids. “DNA 
markup” is a string with repeating “A”,”T”,”C” and 
“G”, used to represent DNA sequence in text. 

• DNA carries “blueprints” of proteins. 

• Only some segments of DNA sequence contains 
“blueprints” for proteins, called GENEs. 



Gene Prediction



Gene Prediction

• Task: Labelling genes from DNA markups. 

• However, expert labelled 𝑋 and 𝑌 pairs are available.

• We can learn a probabilistic model!

0 1 1 1

G C A C𝑋

𝑌 0

T

0

C

…

…

The exact mapping rules from 𝑋 to 𝑌 have been unknown 
to scientists yet, and perhaps is very complicated. 



“Far better an approximate answer to the right question, 
which is often vague, than an exact answer to the wrong 
question, which can always be made precise.”

John Tukey



Another Example

• Part of Speech (POS) Labelling

• Labelling the lexical properties in a sentence

• Important for computer to extract key information

• For example, named-entities.
• Locations, Person Names, Company Names… 

I        live       in      Tokyo.

LOCATIONPARTICLEVERB𝑌

𝑋

PRONOUN



Probabilistic Model for Sequences

• Suppose, 𝑌 is an underlying hidden variable. 
• e.g. Gene label (0: non-gene, 1: gene). 

• 𝑋 is an observed variable, generated from 𝑌.
• e.g. the DNA sequence, “ATGCG…”

• Given paired samples (𝒙, 𝒚), we may learn a model: 
• 𝑝 𝒚 𝒙; 𝛽 .

• By using such model, given an observed 𝒙′, we may 
infer a possible label 𝒚’.

𝑌1 𝑌2 𝑌3 𝑌4

𝑋1 𝑋2 𝑋3 𝑋4𝑋

𝑌



Conditional Random Field (CRF)

• In the previous example, 𝑋 are not linked between 
each other, and 𝑌 are only linked as a chain. 

• 𝑋 and 𝑌 can have more complicated structures, 
depending on applications. 

• Generally speaking, a probabilistic model 𝑝(𝒚|𝒙; 𝛽)
defined on a Markov Random Field on 𝑍 = 𝑋 ∪ 𝑌, 
is called conditional random field. 
• This model is very suitable for supervised learning. 

• “discriminative model”



Modelling CRF

• Can we fit CRF into Exponential Family? 
• If so, learning CRF would be similar to the learning of 

earlier models, by using gradient descent. 

• YES, we CAN!
• MRF itself is a member of Exponential Family. 

• The log-linear model of MRF is sometimes called Gibbs 
distribution. 



Modelling CRF

• The exponential family has the following form:

• 𝑝 𝒚|𝒙, 𝜽 = exp 𝜽⊤𝒇 𝒚, 𝒙 − log𝑁 𝜽; 𝒙
• The question is, how to design 𝒇?

• 𝒇 needs to capture the intrinsic information of 𝑥 and 𝑦.

• Can’t we define one feature jointly on 𝒙 and 𝒚?
• Yes, we can! e.g. 𝒇: 𝑅𝑝×𝑝 → 𝑅

• However, 𝒚 and 𝒙 are both 𝑝 dimensional vectors. 
• Design such feature function may be hard. 

• Only a scalar output is not expressive enough.



Modelling CRF

• For simplicity, we only consider chain shaped CRF:

• It is suggested that to use the following 𝒇 for a 
chain-shaped CRF:

𝑌1 𝑌2 𝑌3 𝑌4

𝑋1 𝑋2 𝑋3 𝑋4𝑋

𝑌



Extract sufficient statistics only on linked pairwise-random variables

Modelling CRF

• For example, whether the current label position is a named 
entity depends on 
• Whether the previous word is a Name Suffix(“Mr. or Mrs.”) ? 

• Whether the next word is a Company Suffix(“Inc.”)

• Does the current word start with a capital letter (“Tokyo”)? 

𝑌1 𝑌2 𝑌3 𝑌4

𝑋1 𝑋2 𝑋3 𝑋4

𝑔1(𝑦𝑡−1, 𝑦𝑡)

𝑔3(𝑦𝑡 , 𝑥𝑡)

𝑔2(𝑦𝑡 , 𝑦𝑡+1)

𝑔1: backward information
𝑔2: forward information
𝑔3: observational information



Modelling CRF

• 𝜽 =

0
𝜃2
𝜃3
…
𝜃1
𝜃2
𝜃3
…
𝜃1
0
𝜃3

, 𝒇(𝒙, 𝒚) =

0
𝑔2(𝑦2, 𝑦1)
𝑔3(𝑥1, 𝑦1)
…

𝑔1(𝑦𝑖−1, 𝑦𝑖)
𝑔2(𝑦𝑖 , 𝑦𝑖+1)
𝑔3(𝑥𝑖 , 𝑦𝑖)
…

𝑔1 𝑦𝑝−1, 𝑦𝑝
0

𝑔3(𝑥𝑝, 𝑦𝑝)
• We may hand-craft  as many feature as we like, and 

• let the data speak for itself!

If the labelling is 
not position 
specific, 
we can share 
parameters. 

“weights of 
features”

Helps when 
sequences have 
different lengths!



Modelling CRF

• How to choose 𝑔 heavily depending on 
applications. 
• CRF provides great flexibility on choosing features!

• However, in the simplest case 𝑔 𝑧1, 𝑧2 = 𝑧1 ⋅ 𝑧2.



Learning CRF

• Like other supervised learning tasks, we want to learn 
parameter 𝜽 in the probability model 𝑝 𝒚 𝒙; 𝜽 .

• Using MLE, we have the following learning objective: 

• max
𝜽

1

𝑛
 𝑖 log 𝑝 𝑦𝑖 𝒙𝑖 , 𝜃)

=
1

𝑛
 

𝑖

 

𝑡

𝜃1𝑔1 𝑦𝑡−1
(𝑖)
, 𝑦𝑡
(𝑖)

+𝜃2𝑔2 𝑦𝑡
(𝑖)
, 𝑦𝑡+1
(𝑖)

+ 𝜃3𝑔3(𝑦𝑡
𝑖
, 𝑥𝑡
(𝑖)
)

− log𝑁 𝜃1, 𝜃2, 𝜃3, 𝒙
𝑖

Note that only 3 parameters need to be estimated. 

However, what is 𝑁?

Sample index is (𝑖)
Position index is 𝑡



The Pain of Normalization

• 𝑁 𝜃1, 𝜃2, 𝜃3, 𝒙𝒊 =

 𝑦 exp  𝑖 𝑡

𝜃1𝑔1 𝑦𝑡−1
𝑖
, 𝑦𝑡
𝑖

+𝜃2𝑔2 𝑦𝑡
𝑖
, 𝑦𝑡+1
𝑖

+ 𝜃3𝑔3 𝑦𝑡
𝑖
, 𝑥𝑡
𝑖

• 𝑁 is the normalization term that guarantees the 
probability is summed up to one. 

• An unfortunate thing is, the summation is over the entire 
domain of 𝑦. 



The Pain of Normalization

• How large is the entire domain of 𝒚?

• Imagine that 𝒚 is a sequence of 𝑝 binary digits, 
then 𝒚 ∈ 0,1 𝑝. 

• There are 2𝑝possible configurations of 𝒚.

• BTW, the number of atoms in universe is around 

2256.  1

• Predict long sequences by using this model is not 
possible. 

1. http://en.wikipedia.org/wiki/Observable_universe#Matter_content_.E2.80.94_number_of_atoms



The Pain of Normalization

• The solution to this problem is beyond the scope of 
this class. 

• Please refer to the book Daphne & Friedman, 2009, 
Chapter 20.6 for details. 

• D. Koller and N. Friedman (2009). Probabilistic Graphical Models: 
Principles and Techniques. edited by . MIT Press.



Logistic Regression, a Look Back

• Recall the Logistic regression use the model: 

• Logistic Regression is in fact, a very simple 
conditional random field, with
• 𝑔 𝑥𝑡 , 𝑦 = 𝑥𝑡 ⋅ 𝑦

𝑃 𝑦|𝒙, 𝜽 =
exp(𝑦 ⋅ 𝜽⊤𝒙)

1 + exp(𝜽⊤𝒙)

𝑌1

𝑋1 𝑋2 𝑋3 𝑋4𝑋

𝑌 Only one label, no sequence!



Logistic Regression, a Look Back

• Note, since the label of logistic regression only take 
two values, i.e.
• 𝑦 ∈ {0,1}

• Therefore, it only sums up over two summands, 
and is no problem in normalization. 

𝑃 𝑦|𝒙, 𝜽 =
exp(𝑦 ⋅ 𝜽⊤𝒙)

1 + exp(𝜽⊤𝒙)



Conclusion

• Probabilistic models for supervised learning tasks:
• Gauss-Markov Model (regression)

• Logistic Regression (classification)

• Conditional Random Fields (sequence labelling)

• A unified framework
• Maximize the conditional likelihood + Probabilistic 

Models from Exponential Family
• Highly Expressive

• Convex 



Take-home Messages:

Least 
Squares

Logistic 
Regression

Conditional 
Random Field

are Maximal Likelihood Estimators of 

Posterior 
Probability

𝑝(𝑌|𝑋)



Further Readings

• For label predictions using linear models, and their 
extensions:

• http://www.is.titech.ac.jp/~s-
taiji/lecture/dataanalysis/L4.pdf

• 「データ解析」, by Prof. Suzuki, in Japanese.

• For introductions of Conditional Random Field
• Lafferty et al., 2001, 

• Conditional random fields: Probabilistic models for segmenting 
and labeling sequence data

• Daphne & Frideman, 2009
• Chapter 20.3.2

http://www.is.titech.ac.jp/~s-taiji/lecture/dataanalysis/L4.pdf


Further Readings

• For fun reading, anecdotes in statistics. 
• David Salsburg, 2001

• The Lady Tasting Tea: How Statistics Revolutionized Science in 
the Twentieth Century



Write you opinion about the special 
lecture today.
Directly submit the printed report to the 
lecturer next week.

Homework


