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Outliers 126

In practice, very large noise sometimes
appears.

Furthermore, irregular values can be
observed by measurement trouble or by
human error.

Samples with such irregular values are
called outliers.



Outliers (cont.) el

LS criterion Is sensitive to outliers.
fa(r) = a1 + aox
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Even a single outlier can corrupt the
learning result!
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Today’s Plan

oust learning with ¢, -loss
pustness and convexity
pustness and efficiency

pust learning with Huber’s loss

pustness and sparsity
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Quadratic Loss 1e9

n

Tus(e) =Y (falws) ~ui)

1=1
In LS, goodness-of-fit iIs measured by the
squared loss.

Therefore, even a single outlier has
guadratic power to “pull’ the learned function.

The solution will be robust |
If outliers are deemphasized.




|1-Loss

Use /,-loss for measuring goodness-of-fit:

Cn
Gy, = argmin Z ‘fa(azz) — Y
L=l

acRP

Outliers influence o

5 r

nly linearly!
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How to Obtain a Solutlon 131

— argmin Z |fa (x;) —

o ERY
Use the El-trlck.

Z ;i (@

ly| = minv subject to —v <y <w

vER

Q. IS given as the solution of the following

linearly-constrained linear program:

n
2 v
i=1

argmin

acRl veR™

subject to —v < Xa—y <wv



Linearly-Constrained ¢

Linear Program (LP)

Standard optimization software can solve LP:

mﬁin(ﬁ,q) subject to HB < h
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Robustness and Convexity ***

Influence of outliers can be further reduced by
using a sub-linear loss:

|1

However, such a sub-linear loss Is non-convex.
Obtaining a global optimal solution is difficult.



Statistical Interpretation  1°°

Data: Observation = True value + Noise
Wi lyi =1 + €}z

Goal: Estimate p* from{y;}."_;.

/5-loss: Sample mean Is the solution.

~ : 2 n

fie, = argmin | » (y; — p)” | = mean ({y;}j=,)
H | i=1 i

¢,-loss: Sample median Is the solution.

fie, = argmin | Y |y — pl | = median ({y;}7-;)
H i=1 |

Proof: Homework!



Robustness and Efficiency 1%°

We move o% of samples to infinity.

Breakdown point: The maximum « with which
a learned function still stays finite.

® /,-loss: 0%

mp Not at all robust
e /,-loss: 50%

» Most robust
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However, ¢,-loss Is not statistically efficient for
Gaussian noise (i.e., having larger variance)



Huber’'s Robust Learning 13/
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p(y)—{ 2V, WS90
tlyl —5t° (lyl >1t)
t>0 Y |
ls-loss for inliers (samples with small errors).
¢1-loss for outliers (samples with large errors).




How to Obtain A Solution: *°°
Gradient Descent

JHuber ()
o +— O — eVJHuber(a) A @ o
JHuper (0) = ;p(fa(mz‘) — yz) > o

>y
)y ..... t

A quasi-Newton method may also be used.



Quadratic Program (QP)

Another expression of Huber’s loss:

|
ply) = ming(v)  g(v) = 507 +tly = v|

hen &, CaN be obtained as the solution of

min —H’UHertHXa Yy — vl
a Rl veER™ |

Using the 61-tr|ck t’us IS expressed as QP

min —H’UH +1t§:uz

acRl u,veER™

subject to —u<Xa y—v<u



Transforming into Standard Forf

subject to HB < h
GB=g

(87 ch — (Iba Oban ObXn) & — Faﬁ
L et B = u Ly = (OnxbaIm Onxn) »u =I'w0
v Pv — (Onxb; OnxnaIn) U = I"UIB

—uvumzuz ) | (rir.ss) ()

nin |5(@B.6) + (6,)




Robustness and Sparseness

Huber’'s method does not generally provide

a sparse solution.

Combining Huber’s loss with /-penalty:

X SparseHuber — ATrgININ
acR?

-ip(fa(wi) — yz) - )\HaHl-

‘ Quadratic program (QP)




Linear Programming Learning™’
Combine ¢, -loss and ¢,-constraint:

b, — avgmin |3 |fales) — v
=1

acRY

Using the ¢, -trick, we can obtain &; p
as the solution of the following LP:

argmin
o, ucRb veR"

subject to —v< Xa—y <wv
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Z v; + A Z U;
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Transforming into Standard Forfy’

mén(ﬂ, q) subject to HB < h
GB=g

= (Ip, Opxb, Opxn)
= (Opxb, I, Opxn) »
v — (OnxbaonxbaIn)
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Combinations of 144

Various Losses and Penalties

N
Penalty e £2 t1
Loss Smooth Smooth
& Sparse

¢ -loss Efficient| Analytic | Analytc | QP, AGD

Huber ¢ QP, GD QP, GD QP, AGD

¢, -loss Robust | LP,AGD | QP,AGD | LP, AGD

QP: Quadratic Program, LP: Linear Program,
GD: Gradient Descent, AGD: Approximate GD.



Schedule 145

June 17: Special lecture by Dr. Song Liu

e Change detection

June 24: Special lecture by Dr. Marthinus

Christoffel du Plessis
e Learning under class-

July 1: Lecture on Su

palance change

pport Vector Machines

e Application deadline to Mini-Workshop

July 8: Lecture on Density Ratio Estimation
July 15 & July 22: Mini-Workshop

August 1: Final report deadline
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Homework
Prove
fe, = argmin | » (y; —pu)” | = mean ({y;}}- Z Yi
2 L= |

fir, = avgmin |3 |ys — sl | = median ({y:}22)
v —

1
= §(ym + Ym+1)

forylS"'Syméym+1§"'§y2m



Homework (cont.) e

For your own toy 1-dimensional data, perform
simulations using

e Linear/Gaussian kernel models

e Huber learning

and analyze the results, e.g., by changing
e Target functions

e Number of samples
e Noise level

Including outliers in the dataset would be essential for
this homework.

If matrix Q in the QP standard form is ill-conditioned,
you may add a small positive constant to diagonals.



