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126OutliersOutliers

 In practice, very large noise sometimes 
appears.
Furthermore, irregular values can be 

observed by measurement trouble or by 
human error.
Samples with such irregular values are 

called outliers.



127Outliers (cont.)Outliers (cont.)
LS criterion is sensitive to outliers.

Even a single outlier can corrupt the 
learning result!

LS (without outlier) LS (with outlier)

Outlier



128Today’s PlanToday’s Plan

Robust learning with     -loss
Robustness and convexity
Robustness and efficiency
Robust learning with Huber’s loss
Robustness and sparsity



129Quadratic LossQuadratic Loss

 In LS, goodness-of-fit is measured by the 
squared loss.
Therefore, even a single outlier has 

quadratic power to “pull” the learned function.
The solution will be robust 

if outliers are deemphasized.



130l1-Lossl1-Loss
Use    -loss for measuring goodness-of-fit:

Outliers influence only linearly!



131How to Obtain a SolutionHow to Obtain a Solution

Use the     -trick:

 is given as the solution of the following
linearly-constrained linear program:

subject to − v ≤ y ≤ v|y| = min
v∈R

v



132Linearly-Constrained
Linear Program (LP)
Linearly-Constrained
Linear Program (LP)

Standard optimization software can solve LP:

Let







133ExamplesExamples

LS LS

Outlier

Outlier



Robustness and ConvexityRobustness and Convexity
 Influence of outliers can be further reduced by 

using a sub-linear loss:

However, such a sub-linear loss is non-convex.
Obtaining a global optimal solution is difficult.
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135Statistical InterpretationStatistical Interpretation
Data: Observation = True value + Noise

Goal: Estimate     from           .
 -loss: Sample mean is the solution.

 -loss: Sample median is the solution.

Proof: Homework!



136Robustness and EfficiencyRobustness and Efficiency
We move   % of samples to infinity.
Breakdown point: The maximum    with which 

a learned function still stays finite.
 -loss: 0%

 -loss: 50%

However,   -loss is not statistically efficient for 
Gaussian noise (i.e., having larger variance)

Not at all robust

Most robust



137Huber’s Robust LearningHuber’s Robust Learning

 -loss for inliers (samples with small errors). 
 -loss for outliers (samples with large errors).

Huber, Robust Statistics (Wiley, 1981)
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How to Obtain A Solution:
Gradient Descent

How to Obtain A Solution:
Gradient Descent

A quasi-Newton method may also be used.
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139Quadratic Program (QP)Quadratic Program (QP)
Another expression of Huber’s loss:

Then            can be obtained as the solution of

Using the   -trick, this is expressed as QP:



Transforming into Standard FormTransforming into Standard Form

Let




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141Robustness and SparsenessRobustness and Sparseness
Huber’s method does not generally provide    

a sparse solution. 
Combining Huber’s loss with    -penalty:

Quadratic program (QP)



142Linear Programming LearningLinear Programming Learning
Combine    -loss and    -constraint:

Using the     -trick, we can obtain         
as the solution of the following LP: 



Transforming into Standard FormTransforming into Standard Form

Let




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Combinations of
Various Losses and Penalties

Combinations of
Various Losses and Penalties

 QP: Quadratic Program, LP: Linear Program,             
GD: Gradient Descent, AGD: Approximate GD.
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None

-loss Analytic Analytic QP, AGD

Huber QP, GD QP, GD QP, AGD

-loss LP, AGD QP, AGD LP, AGD

Loss

Penalty

Efficient

Robust

Smooth Smooth
& Sparse



ScheduleSchedule
June 17: Special lecture by Dr. Song Liu
 Change detection

June 24: Special lecture by Dr. Marthinus
Christoffel du Plessis
 Learning under class-balance change

July 1: Lecture on Support Vector Machines
 Application deadline to Mini-Workshop

July 8: Lecture on Density Ratio Estimation
July 15 & July 22: Mini-Workshop
August 1: Final report deadline
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146HomeworkHomework
1. Prove



147Homework (cont.)Homework (cont.)
2. For your own toy 1-dimensional data, perform 

simulations using 
 Linear/Gaussian kernel models
 Huber learning

and analyze the results, e.g., by changing
 Target functions
 Number of samples
 Noise level

Including outliers in the dataset would be essential for 
this homework.

 If matrix     in the QP standard form is ill-conditioned, 
you may add a small positive constant to diagonals.


