Pattern Information Processing:⁹⁷ Sparse Methods

Masashi Sugiyama (Department of Computer Science)

Contact: W8E-505 <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi/

Sparseness and Continuous Model Choice

Two approaches for avoiding over-fitting:

	Sparseness	Model parameter
Subset LS	Yes	Combinatorial
Quadratically constrained LS	No	Continuous

We want to have sparseness and continuous model choice at the same time.

Today's Plan

Sparse learning method

- How to deal with absolute values in optimization
- Approximate gradient descent
- Standard form of quadratic programs

Non-Linear Learning for ¹⁰⁰ Linear / Kernel Models

Linear / kernel models

$$f_{\boldsymbol{\alpha}}(\boldsymbol{x}) = \sum_{i=1}^{b} \alpha_i \varphi_i(\boldsymbol{x}) \quad f_{\boldsymbol{\alpha}}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$

Non-linear learning

$$\hat{oldsymbol{x}} = oldsymbol{L}(oldsymbol{y})$$

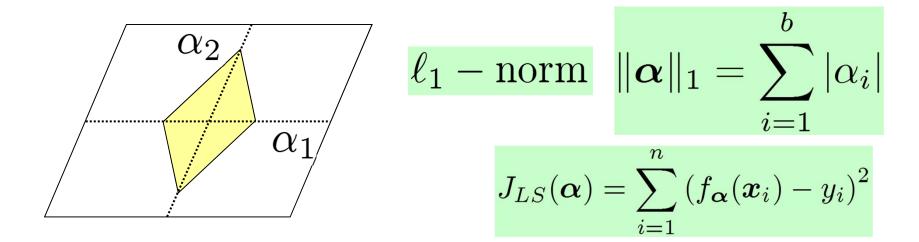
 $oldsymbol{L}(\cdot)$:Non-linear function

101 I1-Constrained LS

Restrict the search space within an ℓ_1 -ball.

$$\hat{\boldsymbol{\alpha}}_{\ell_1 CLS} = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^b} J_{LS}(\boldsymbol{\alpha})$$

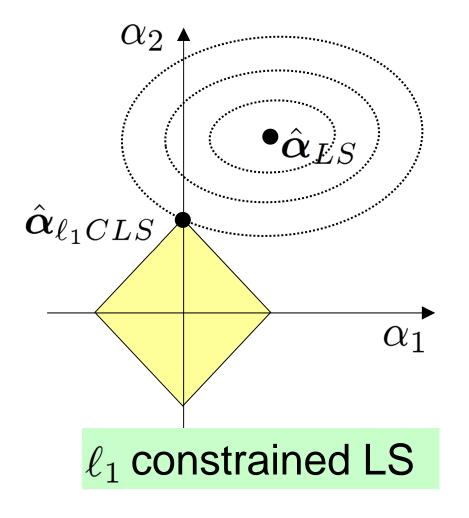
subject to $\|\boldsymbol{\alpha}\|_1 \leq C$

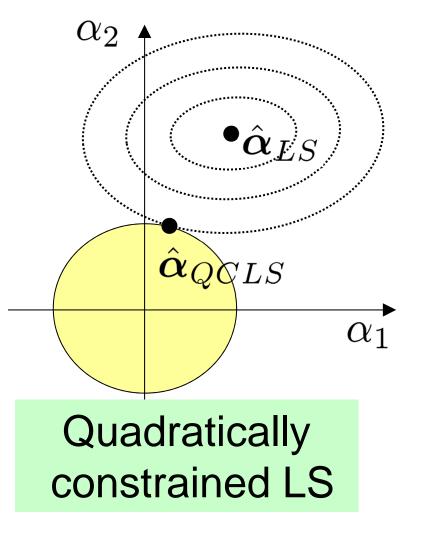


Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B, 58(1), 267-288,1996.

Why Sparse?

The solution is often exactly on an axis.





How to Obtain A Solution ¹⁰³

Lagrangian:

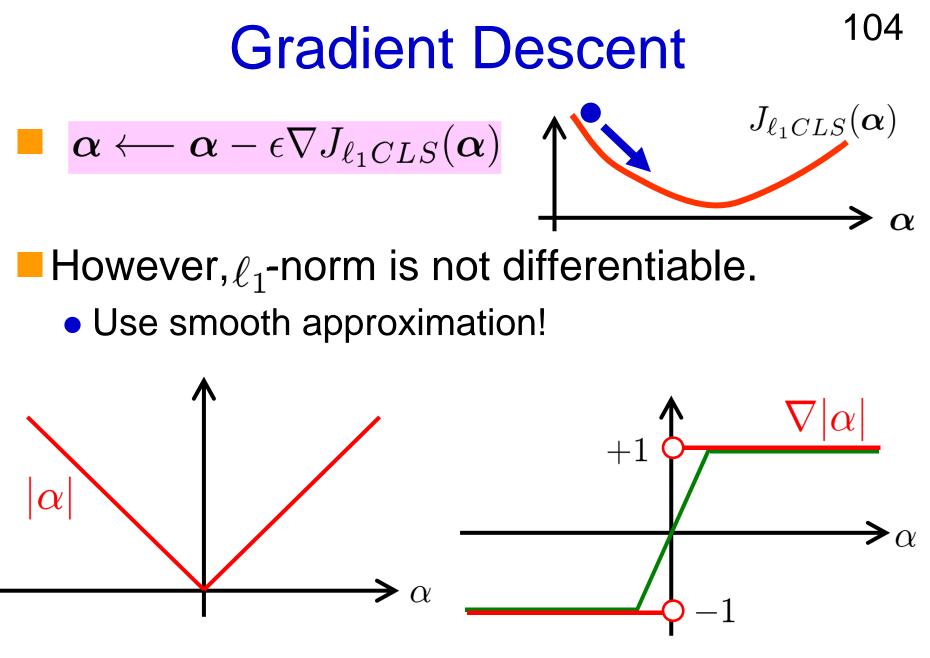
$$J_{\ell_1 CLS}(\boldsymbol{\alpha}) = J_{LS}(\boldsymbol{\alpha}) + \lambda(\|\boldsymbol{\alpha}\|_1 - C)$$

λ :Lagrange multiplier

Similarly to QCLS, we practically start from $\lambda \ (\geq 0)$ and solve

$$\hat{\boldsymbol{lpha}}_{\ell_1 CLS} = \operatorname*{argmin}_{\boldsymbol{lpha} \in \mathbb{R}^b} J_{\ell_1 CLS}(\boldsymbol{lpha})$$

It is often called ℓ_1 -regularized LS.



• You may also use a quasi-Newton method.

Quadratic Program

Use the following expression:

 $|\alpha| = \min_{u \in \mathbb{R}} u$ subject to $-u \le \alpha \le u$

105

Proof by contradiction:

- Let $\widehat{u} = \underset{u \in \mathbb{R}}{\operatorname{argmin} u}$ subject to $-u \leq \alpha \leq u$.
- The constraint implies $\widehat{u} \ge |\alpha|$.
- Assume $\widehat{u} > |\alpha|.$
- Then such \widehat{u} is not a solution because $\widetilde{u} = |\alpha|$ gives a smaller value.
- This implies that the solution should satisfy $\widehat{u} = |\alpha|$.

How to Obtain A Solution (cont.)⁶

$$\hat{\boldsymbol{lpha}}_{\ell_1 CLS} = \operatorname*{argmin}_{\boldsymbol{lpha} \in \mathbb{R}^b} J_{LS}(\boldsymbol{lpha}) + \lambda \| \boldsymbol{lpha} \|_1$$

 $\hat{\alpha}_{\ell_1 CLS}$ is given as the solution of

$$\min_{oldsymbol{lpha},oldsymbol{u}\in\mathbb{R}^b} \left[J_{LS}(oldsymbol{lpha}) + \lambda \sum_{i=1}^b u_i
ight] \ ext{ subject to } -oldsymbol{u} \leq oldsymbol{lpha} \leq oldsymbol{u},$$

Note: Inequality for vectors is component-wise

$$J_{LS}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \left(f_{\boldsymbol{\alpha}}(\boldsymbol{x}_i) - y_i \right)^2 = \|\boldsymbol{X}\boldsymbol{\alpha} - \boldsymbol{y}\|^2$$

Linearly-Constrained ¹⁰⁷ Quadratic Program (QP)

Standard optimization software can solve QP:

$$egin{aligned} \min_{oldsymbol{eta}} \left[rac{1}{2} \langle oldsymbol{Q}oldsymbol{eta},oldsymbol{eta}
ight
angle + \langleoldsymbol{eta},oldsymbol{q}
ight
angle \ ext{subject to }oldsymbol{H}oldsymbol{eta}\leqoldsymbol{h} \ oldsymbol{G}oldsymbol{eta}=oldsymbol{g} \end{aligned}$$

Transformation into Standard Form

108

Let $oldsymbol{eta} \;=\; \left(egin{array}{cc} oldsymbol{lpha} \ oldsymbol{u} \end{array}
ight) \;\;\;\;\;\;\; egin{array}{cc} oldsymbol{\Gamma_{lpha}} \;=\; \left(oldsymbol{I}_{b},oldsymbol{O}_{b}
ight) \ oldsymbol{\Gamma_{oldsymbol{u}}} \;=\; \left(oldsymbol{O}_{b},oldsymbol{I}_{b}
ight) \ oldsymbol{\Gamma_{oldsymbol{u}}} \;=\; \left(oldsymbol{O}_{b},oldsymbol{I}_{b}
ight)$ Then $egin{array}{rcl} lpha &=& \Gamma_{oldsymbollpha}eta \ u &=& \Gamma_{oldsymbol u}eta \end{array}$ Use these expressions and replace all

 $oldsymbol{lpha},oldsymbol{u}$ with $oldsymbol{eta}$.

Standard Form

$$\min_{oldsymbol{eta}} \left[rac{1}{2} \langle oldsymbol{Q}oldsymbol{eta},oldsymbol{eta}
ight
angle + \langle oldsymbol{eta},oldsymbol{q}
ight
angle \left[rac{1}{2} \langle oldsymbol{Q}oldsymbol{eta},oldsymbol{eta}
ight
angle + \langle oldsymbol{eta},oldsymbol{q}
ight
angle \left[rac{1}{2} \langle oldsymbol{Q}oldsymbol{eta},oldsymbol{eta}
ight
angle + \langle oldsymbol{eta},oldsymbol{q}
ight
angle \left[rac{1}{2} \langle oldsymbol{Q}oldsymbol{eta},oldsymbol{eta}
ight
angle + \langle oldsymbol{eta},oldsymbol{q}
ight
angle \left[rac{1}{2} \langle oldsymbol{Q}oldsymbol{eta},oldsymbol{eta}
ight
angle + \langle oldsymbol{eta},oldsymbol{q}
ight
angle \left[rac{1}{2} \langle oldsymbol{Q}oldsymbol{eta},oldsymbol{eta}
ight
angle + \langle oldsymbol{eta},oldsymbol{q}
ight
angle \left[rac{1}{2} \langle oldsymbol{Q}oldsymbol{eta},oldsymbol{eta}
ight
angle + \langle oldsymbol{eta},oldsymbol{q}
ight
angle \left[rac{1}{2} \langle oldsymbol{Q}oldsymbol{eta},oldsymbol{eta}
ight
angle + \langle oldsymbol{eta},oldsymbol{q}
ight
angle \left[rac{1}{2} \langle oldsymbol{Q},oldsymbol{eta},oldsymbol{eta}
ight
angle
ight
angle = \left[rac{1}{2} \langle oldsymbol{A},oldsymbol{eta},oldsymbol{eta}
ight
angle
ight
angle
ight
angle
ight
angle
ight
angle \left[rac{1}{2} \langle oldsymbol{A},oldsymbol{eta},oldsymbol{eta}
ight
angle
ight
angle$$

ℓ_1 -constrained LS can be expressed as

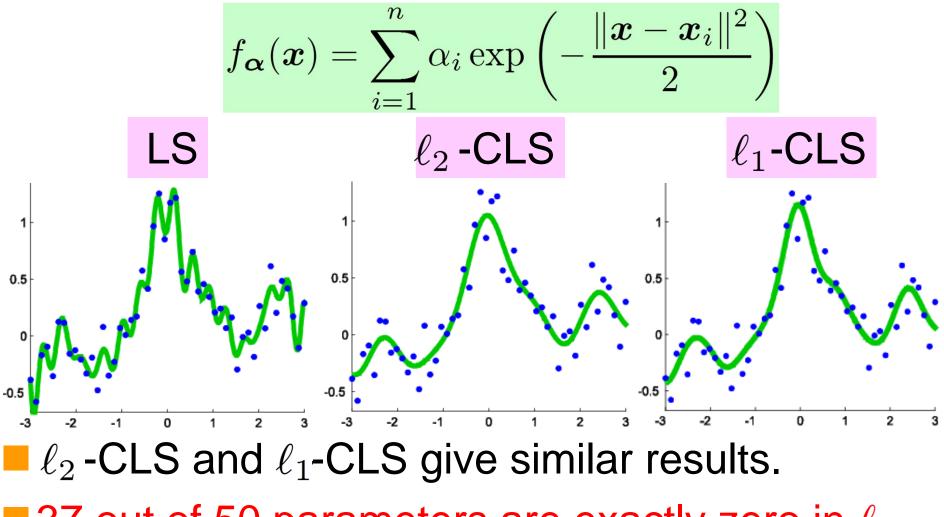
$$egin{array}{rcl} m{Q} &=& 2m{\Gamma}_{m{lpha}}^{ op} m{X}^{ op} m{X} m{\Gamma}_{m{lpha}} & \ m{q} &=& -2m{\Gamma}_{m{lpha}}^{ op} m{X}^{ op} m{y} + \lambda m{\Gamma}_{m{u}}^{ op} m{1}_b & \ m{H} &=& m{\left(\begin{array}{c} -m{\Gamma}_{m{lpha}} - m{\Gamma}_{m{u}} \ m{\Gamma}_{m{lpha}} & m{r}_b & \ m{\Gamma}_{m{lpha}} - m{\Gamma}_{m{u}} \end{array}
ight) & \ m{h} &=& m{0}_{2b} & \ m{G} &=& m{O}_{2b} & \ m{g} &=& m{0}_{2b} & \ m{g} &=& m{g}_{2b} & \ m{g}$$

109

Proof: Homework!

Example of Sparse Learning ¹¹⁰

Gaussian kernel model:



37 out of 50 parameters are exactly zero in ℓ_1 .

Feature Selection

If l₁-CLS is combined with linear model with respect to input,

$$f_{\boldsymbol{\alpha}}(\boldsymbol{x}) = \boldsymbol{\alpha}^{\top} \boldsymbol{x} \quad \boldsymbol{x} = (x^{(1)}, x^{(2)}, \dots, x^{(d)})^{\top}$$

some input variables are not used for prediction.

Important features

111

are automatically selected

Example: Gene selection

- Generally,2^d combinations need to be compared for feature selection (cf. subset LS).
- On the other hand, ℓ_1 -CLS only involves a continuous model parameter λ .

Constrained LS

112

	Sparseness	Model parameter	Parameter learning
Subset LS	Yes	Combina- torial	Analytic (Linear)
Quadratically constrained LS	No	Continuous	Analytic (Linear)
ℓ_1 constrained LS	Yes	Continuous	Iterative (Non-linear)

Notification of Final Assignment

113

- 1. Apply supervised learning techniques to your data set and analyze it.
- Final report deadline: Aug 1st (Fri.) 17:00
 Bring your report to W8E-404.

Mini-Workshop on Data Mining¹¹⁴

- On July 15th and 22nd, we will have a miniworkshop on data mining.
- Several students present their own data mining results.
- Those who give a talk at the workshop will have very good grades!

Mini-Workshop on Data Mining¹¹⁵

- Application (just to declare that you want to give a presentation) deadline: July 1st.
- Presentation: 10-15 minutes (?).
 - Specification of your dataset
 - Methods used
 - Outcome
- Slides should be in English.
- Better to speak in English, but Japanese is also allowed.

Homework

1. Derive the standard quadratic programming form of ℓ_1 -constrained LS.

$$egin{aligned} \min_{oldsymbol{eta}} igg[rac{1}{2} \langle oldsymbol{Q}oldsymbol{eta},oldsymbol{eta}
angle + \langleoldsymbol{eta},oldsymbol{q}
angle igg] \ ext{subject to } oldsymbol{H}oldsymbol{eta} \leq oldsymbol{h} \ oldsymbol{G}oldsymbol{eta} = oldsymbol{g} \end{aligned}$$

$$egin{array}{rcl} m{Q} &=& 2 m{\Gamma}_{m{lpha}}^{ op} m{X}^{ op} m{X} m{\Gamma}_{m{lpha}} & \ m{q} &=& -2 m{\Gamma}_{m{lpha}}^{ op} m{X}^{ op} m{y} + \lambda m{\Gamma}_{m{u}}^{ op} m{1}_b & \ m{H} &=& m{\left(\begin{array}{c} -m{\Gamma}_{m{lpha}} - m{\Gamma}_{m{u}} \ m{\Gamma}_{m{lpha}} - m{\Gamma}_{m{u}} \ m{
ight)} & \ m{h} &=& m{0}_{2b} & \ m{G} &=& m{O}_{2b} & \ m{g} &=& m{0}_{2b} & \ m{g} &=& m{g}_{2b} & \ m{g}_{2b} & \$$

116

 (α)

Homework (cont.)

- 2. For your own toy 1-dimensional data, perform simulations using
 - Gaussian kernel models
 - ℓ_1 -constraint least-squares learning and analyze the results, e.g., by changing
 - Target functions
 - Number of samples
 - Noise level

Use 5-fold cross-validation for choosing

- Width of Gaussian kernel
- Regularization parameter

Compare the results of QCLS and ℓ_1 CLS, e.g., in terms of sparseness and accuracy.

Solving QP Problems

- R: "quadprog"
- Octave: "qp"
- MATLAB: "quadprog" (you need Optimization Toolbox)
 - Various free software seems available, for example, "quadprog2". http://www.mathworks.com.au/matlabcentral/ fileexchange/7860-quadprog2-convex-qpsolver