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51Over-fittingOver-fitting

LS was proved to be a good learning method:
 Unbiased and BLUE in realizable cases.
 Asymptotically unbiased and asymptotically 

efficient in unrealizable cases.
However, a learned function can over-fit to 

noisy examples (e.g., when the noise level is 
high).



52Over-fittingOver-fitting
Trigonometric polynomial model:

 In order to prevent over-fitting, model (search 
space) should be restricted appropriately.

Small noise Large noise



53Today’s PlanToday’s Plan

Two approaches to restricting models:
 Subspace LS
 Quadratically constrained LS

Sparseness and model choice.

We focus on linear/kernel models.



54Subspace LSSubspace LS
Restrict the search space within a subspace

Ordinary LS Subspace LS

: orthogonal projection
onto a subspace



55How to Obtain A SolutionHow to Obtain A Solution
Since                                      

just replacing        with          gives a solution:

 :Moore-Penrose generalized inverse



56Example of SLSExample of SLS

Over-fit can be avoided by properly
choosing a subspace.

Full LS Subspace LS



57Principal Component RegressionPrincipal Component Regression
Choose the maximum-variance subspace:

 Eigendecomposition of covariance matrix:

 Eigenvalues:
 Eigenvectors:



58Quadratically Constrained LSQuadratically Constrained LS
Restrict the search space within a 

hyper-sphere.



59How to Obtain A SolutionHow to Obtain A Solution
 Lagrangian:

 : Lagrange multiplier

 Karush-Kuhn-Tucker (KKT) condition: for 
some           , the solution              satisfies









60How to Obtain A Solution (cont.)How to Obtain A Solution (cont.)


We still need to determine     , but this is not 
straightforward.
 In practice, we start from setting              and 

solve



61Interpretation of QCLSInterpretation of QCLS

QCLS tries to avoid overfitting by adding 
a penalty (regularizer) to the “goodness-
of-fit” term.

For this reason, QCLS is also called 
quadratically regularized LS.
 is called the regularization parameter.

Good-
ness of fit

Penalty
(regularizer)



62Example of QCLSExample of QCLS
Gaussian kernel model:

Over-fit can be avoided by properly 
choosing the regularization parameter.

Full LS QCLS



63GeneralizationGeneralization
Restrict the search space within a 

hyper-ellipsoid.

Solution: (proof is homework!)

:Positive semi-definite matrix 
(“regularization matrix”)



64Sparseness of SolutionSparseness of Solution

 In SLS, if the subspace is spanned by 
a subset of basis functions                  , 
some of the parameters              are 
exactly zero.



65Sparseness and Model ChoiceSparseness and Model Choice
Having sparsity is computationally attractive:
 Calculating output values is easier.

 Computing the solution can potentially be easier.
However, the number of possible subsets is 

combinatorial,    .
 It is computationally infeasible to find the best 

subset if    is large.



66Sparseness and Model Choice
(cont.)

Sparseness and Model Choice
(cont.)

 In QCLS, model choice is continuous: 
However, solution is not generally sparse.



67HomeworkHomework
1. Prove that the solution of

is given by



68Homework (cont.)Homework (cont.)
2. For your own toy 1-dimensional data, perform 

simulations using 
Gaussian kernel models
Quadratically-constrained least-squares learning

and analyze the results, e.g., changing
 Target functions
 Number of samples
 Noise level
Width of Gaussian kernel
 Regularization parameter/matrix


