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Supervised Learning:
Learning from Examples

Supervised Learning:
Learning from Examples

There exists a function                .
We do not know        , but we are given 

its samples                   .
The goal of supervised learning is to 

obtain an approximation        to         
from                    . 
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Regression: Real OutputsRegression: Real Outputs

For real output          , the supervised 
learning problem is called regression.
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Classification: Categorical OutputsClassification: Categorical Outputs

For categorical output                        ,      
the problem is called classification.

For the moment, let us focus on regression 
problems.
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5NotationsNotations

 : Input domain
 :Learning target function (           )  
 :Training input point
 :Training output value
 :Training examples
 :Learned function
 :Model (a set of functions)



6Today’s PlanToday’s Plan

Model:
 Linear model
 Kernel model 

Learning method:
 Least-squares learning



7Linear/Non-Linear ModelsLinear/Non-Linear Models
Model is a set of functions from which learning 

result functions are searched.
We use a parameterized family of functions

Linear model: is linear with respect to
(Note: not necessarily linear with respect to )
Non-linear model: Otherwise



8Linear ModelLinear Model

 :Linearly independent basis functions
For example, when          :
 Polynomial bases

 Sinusoidal bases



9Multi-Dimensional Linear ModelMulti-Dimensional Linear Model
For multidimensional input            ,             

a product model could be used.

The number of parameters is           , 
growing exponentially with respect to    . 
 Infeasible for large     !



10Additive ModelAdditive Model

For large    , we have to reduce the number 
of parameters.
Additive model:

The number of parameters is only           .
However, additive model is too simple so its 

representation capability may not be rich 
enough in some application.



11Kernel ModelKernel Model
Linear model:

do not depend on 

Kernel model:

 Example: Gaussian kernel

: Bandwidth



12Gaussian Kernel ModelGaussian Kernel Model

Put kernel functions at training input points.



Gaussian Kernel Model (cont.)Gaussian Kernel Model (cont.)
When training inputs are unevenly distributed, 

Gaussian kernel model automatically focuses 
on the region where training inputs exist.
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14Kernel Model (cont.)Kernel Model (cont.)

The number of parameters is    , which is 
independent of the input dimensionality   .
Although kernel model is linear w.r.t.     , 

the number of parameters grows as the 
number of training samples increases.
Mathematical treatment could be different 

from ordinary linear models (called a “non-
parametric model” in statistics).



15Summary of Linear ModelsSummary of Linear Models
Linear model (product):

High flexibility, high complexity
Linear model (additive):

Low flexibility, low complexity
Kernel model:

Moderate flexibility, moderate complexity

Good model depends on applications. 
Later, we discuss how to choose an 

appropriate model (“model selection”).



16Learning MethodsLearning Methods

Linear learning method:
Parameter vector                                   
is estimated linearly with respect to

Non-linear learning methods: Otherwise



17Linear Learning for
Linear Models / Kernel Models

Linear Learning for
Linear Models / Kernel Models

 In linear learning methods, a learned 
parameter vector is given by

:Learning matrix



18Least-Squares LearningLeast-Squares Learning

Learn     such that the squared error at 
training input points is minimized:

:Design matrix



19How to Obtain A SolutionHow to Obtain A Solution
Extreme-value condition:

Therefore, LS is linear learning.

If you are not familiar with vector-derivatives, see e.g, 
“Matrix Cookbook” (http://matrixcookbook.com)

(We assume                 exists.)



20Example of LSExample of LS

Trigonometric polynomial model:



21HomeworkHomework

1. Prove that the LS solution in kernel 
models is given by

(Kernel matrix)



22Homework (cont.)Homework (cont.)
2. For your own toy 1-dimensional data, perform 

simulations using 
 Gaussian kernel models and least-squares 

learning
and analyze the results when, e.g.,

 target functions, number of samples, noise 
level, and width of Gaussian kernel

are changed.
Tips: If matrix       is unstable to invert, you 

may add a small positive constant to diagonals.
 Deadline: Next class


