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Supervised Learning:
Learning from Examples

There exists a function y = f(x).

We do not know f(x), but we are given
its samples {(x;, y;) }i 1.

The goal of supervised learning is to
obtain an approximation f(x)to f(x)
from {(z:, i)}



Regression: Real Outputs

For real output y ¢ R, the supervised
learning problem is called regression.
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Classification: Categorical Output$

For categorical output y < {1,...,m},
the problem is called classification.
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For the moment, let us focus on regression
problems.



Notations

D c R%: Input domain

f(«) :Learning target function (p — R)
x; € D :Training Input point

y; € R :Training output value
{(x;,y;)};1:Training examples

f € M :Learned function

M :Model (a set of functions)



Today’s Plan

Model:

e | Inear model
e Kernel model

Learning method:
e Least-squares learning



Linear/Non-Linear Models

Model is a set of functions from which learning
result functions are searched.

We use a parameterized family of functions

{fa(w) | & = (ah" '7ab)T}

Linear model: f, (x)Is linear with respect to o
(Note: not necessatrily linear with respect to x )
Non-linear model: Otherwise



Linear Model

fa(z) = Z ;i ()

{w;(x) le -Linearly independent basis functions

For example, when ¢ = 1:
e Polynomial bases

2 b—1
lLx,z°,....x
e Sinusoidal bases
l,sinx,cosx,...,sinkx, cos kx

b=2k+1



Multi-Dimensional Linear Model °

For multidimensional input (d > 1),
a product model could be used.

= (zW,. . T

The number of parameters is p = ¢,
growing exponentially with respect to (.

Infeasible for large d !



Additive Model 10

For large d, we have to reduce the number
of parameters.

Additive model: x= (V.. 2T

The number of parameters ISsonly b = ed.

However, additive model is too simple so its
representation capability may not be rich
enough in some application.



Kernel Model H

Linear model:
{pi(®)};—; do not depend on {(z:,y:)}i=;

Kernel model:

EozZ (x, x;)

e Example: Gau33|an kernel

N |z — 2|7
K(a:,zc)exp( 57 )

h(> 0): Bandwidth




Gaussian Kernel Model  *°

fal®) = zn:ozi exp ( [ 2_h:§iH2)

Put kernel functions at training input points.
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Gaussian Kernel Model (cont.) ™

When training inputs are unevenly distributed,
Gaussian kernel model automatically focuses
on the region where training Inputs exist.



Kernel Model (cont.) e

Eozz (x, ;)

The number of parameters IS n, which is
iIndependent of the input dimensionality d.

Although kernel model is linear w.r.t. o,
the number of parameters grows as the
number of training samples increases.

Mathematical treatment could be different
from ordinary linear models (called a “non-
parametric model” In statistics).



Summary of Linear Models

Linear model (product):
High flexibility, high complexity

Linear model (additive):
Low flexibility, low complexity

Kernel model:
Moderate flexibility, moderate complexity

Good model depends on applications.

Later, we discuss how to choose an
appropriate model (“model selection”).
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Learning Methods

Linear learning method:

Parameter vector a = (ay,. .., ap)
IS estimated linearly with respect to

T

y=(y1, ..., Yn)

Non-linear learning methods: Otherwise
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Linear Learning for H

Linear Models / Kernel Models
falz) = Zaz‘%(fﬁ)

In linear learning methods, a learned
parameter vector is given by

a = Ly L :Learning matrix



Least-Squares Learning ™

Learn o« such that the squared error at
training input points is minimized:
ars = argmin Jrg(o)
acRY

n

Jros(a) = Z (falz;) — yz‘)z

1—=1
= | Xa -yl

X@',j — ©; (.’I,‘,L) :DeSign matrix(n X b)



How to Obtain A Solution ™

Extreme-value condition:
VJLS(&LS) = QXT(X(AXLS — y) — 0
) ;5= (X' X)Xy
(We assume (X ' X) ! exists.)
Therefore, LS Is linear learning.
ars = Lipsy
Lrs=(X"X)"'x"'

If you are not familiar with vector-derivatives, see e.qg,
“Matrix Cookbook” (http://matrixcookbook.com)



Example of LS
falz) = Z@i%(a”)

Trigonometric polynomial model:

1,sinx,cosx,...,sin 15z, cos15z (b = 31)
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Homework

b
fa(®) =) aipi()
=1
Prove that the LS solution in kernel
models Is given by
ars = Lrsy
Lis=K'

Kf,;,j = K(CB@, .’Bj)
(Kernel matrix)
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Homework (cont.) °2

For your own toy 1-dimensional data, perform
simulations using

e Gaussian kernel models and least-squares
learning

and analyze the results when, e.qg.,

e target functions, number of samples, noise
level, and width of Gaussian kernel

are changed.

Ips: If matrix K Is unstable to invert, you
may add a small positive constant to diagonals.

Deadline: Next class




