Fundamentals of Mathematical and Computing Sciences: Applied Mathematical Science

Part III: Low rank matrix estimation (Lecture 5) Advanced topics

2014-7-24

Taiji Suzuki (Room W707, post W8-46) e-mail: suzuki.t.ct@m.titech.ac.jp

Today's topic:

• Efficient randomized method for SVD of very large (near) low rank matrix

Preliminary 1

We want to compute the SVD of a very large matrix A:

$$A = \underbrace{U}_{M \times d} \times \underbrace{\Sigma}_{d \times d} \times \underbrace{V}^{\top}_{d \times N} \in \mathbb{R}^{M \times N}.$$

Suppose a situation where M, N are very large, say 10^6 , but d is not large, say 10^3 .

2 Algorithm

- 1. Draw a $N \times d$ Gaussian random matrix Ω ($\Omega_{i,j} \sim N(0,1)$, i.i.d.). 2. Compute $Y = A\Omega \in \mathbb{R}^{M \times d}$ (Y is much smaller than the original matrix A).
- 3. Compute an orthonormal matrix $Q \in \mathbb{R}^{M \times d}$ $(Q^{\top}Q = I)$ such that columns of Qspans the image of Y.
- 4. Compute $B = Q^{\top}A$ (= $Q^{\top}U\Sigma V^{\top}$) $\in \mathbb{R}^{d\times N}$. Note that B is a small matrix.
- 5. Compute SVD of B; $B = U_B \Sigma_B V_B^{\top}$.
- 6. Obtain $U = QU_B$.

Note that $QB = QQ^{T}A = A$. The third step can be executed in a standard way such as the Gram-Schmidt orthonormalization.

Verification:

- ullet The columns of Y spans the image of A almost surely. Thus the columns of Q also spans the image of A a.s..
- Therefore Q can be written as Q = US for some $S \in \mathbb{R}^{d \times d}$. Here $Q^{\top}Q = I$ implies
- $S^{\top}U^{\top}US = S^{\top}S = I$. That is, S is orthogonal. Thus $B = Q^{\top}A = S^{\top}U^{\top}A = S^{\top}\Sigma V^{\top}$. This yields $S^{\top} = U_B$ and $V = V_B$. In particular, $QU_B = QS^{\top} = USS^{\top} = U$.

3 Theory

Q: What happens if the rank of A is larger than d?

Theorem 1. For any $k \ge 2$ and $p \ge 2$ such that $k + p = d \le \min\{M, N\}$, we have that

$$E[\|A - QQ^{\top}A\|_F] \le \left(1 + \sqrt{\frac{k}{p-1}}\right) \sigma_{k+1} + \frac{e\sqrt{d}}{p} \left(\sum_{j>k} \sigma_j^2\right)^{1/2}.$$

Moreover, we have the following deviation bound.

Theorem 2. For any $k \ge 2$ and $p \ge 4$ such that $k + p = d \le \min\{M, N\}$, we have that

$$||A - QQ^{\top}A||_F \le \left(1 + t\sqrt{\frac{12k}{p}}\right) \left(\sum_{j>k} \sigma_j^2\right)^{1/2} + ut\frac{e\sqrt{d}}{p+1}\sigma_{k+1},$$

with probability as least $1 - (5t^{-p} + 2e^{-u^2/2})$.

See [1] for the details and the proofs of these theorems.

References

[1] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. *SIAM Review*, 53(2):217–288, 2011.