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Today’s topic:

• Convergence rate of the trace norm regularized estimator.

1 Preliminary
Model:

yi = ⟨Xi, A
∗⟩+ ϵi,

where A∗ is the true matrix and ϵi ∼ N(0, σ2). We assume that the rank of A∗ is d∗.
Estimator:

Â argmin
A∈RM×N

1

n
∥Y −X (A)∥2 + λn∥A∥Tr,

where Y = [y1, . . . , yn]
⊤, and X (A) = [⟨X1, A⟩, . . . , ⟨Xn, A⟩]⊤.

Q: How rapidly does the estimator Â converge to A∗?
A: Roughly speaking

∥Â−A∗∥2F = Op

(
d∗(M +N) log(MN)

n

)
.

This is much faster than the rate of the standard MLE, Op(
MN
n ), if d∗ ≪ M,N .

2 Restricted Strong Convexity
Assumption 1 (Restricted Strong Convexity (RSC)). ∃C1, C2 > 0 such that

∥X (A)∥√
n

≥ C1∥A∥F − C2

(√
M +

√
N√

n

)
∥A∥Tr,

for all A ∈ RM×N .

Example 2. If each element of Xi is i.i.d. N(0, 1), then

∥X (A)∥√
n

≥ 1

4
∥A∥F − 4

(√
M +

√
N√

n

)
∥A∥Tr,

for all A ∈ RM×N , with probability at least 1− 2 exp(−n/32).
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This can be shown by using the following propositions.

Definition 3 (Gaussian process). A set of random variables {Gx}x∈X on a set X is called
Gaussian process if for all finite combination {x1, . . . , xk} ⊂ X , the joint distribution of
(Gx1 , . . . , Gxk

) obeys a multivariate Gaussian distribution.

Proposition 4 (Gordon-Slepian’s Inequality [1]). Consider two centered Gaussian processes
{Gu,v}(u,v) and {G′

u,v}(u,v) indexed by (u, v) ∈ U × V (“centered” means E[Gu,v = 0] for all
u, v). If G and G′ satisfy

E[(Gu,v −Gu′,v′)2] ≥ E[(G′
u,v −G′

u′,v′)2],

E[(Gu,v −Gu,v′)2] = E[(G′
u,v −G′

u,v′)2],

for all (u, v), (u′, v′) ∈ U × V. Then

E[ inf
u∈U

sup
v∈V

Gu,v] ≤ E[ inf
u∈U

sup
v∈V

G′
u,v].

Applying this lemma to −Gu,v,−G′
u,v under an assumption that V is a singleton, we obtain

classical Slepian’s inequality:

E[(Gu −Gu′)2] ≥ E[(G′
u −G′

u′)2] (∀u, u′ ∈ U)
⇒ E[sup

u
Gu] ≥ E[sup

u
G′

u].

Proposition 5 (Gaussian concentration inequality). Let X ∈ Rm be i.i.d. N(0, 1) and f :
Rm → R be Lipschitz continuous function with the continuity parameter L, |f(x) − f(y)| ≤
L∥x− y∥. Then,

P (|f(X)− E[f(X)]| ≥ δ) ≤ 2 exp

(
− δ2

L2

)
(∀δ > 0).

See Proposition 2.18 of [2] for the proof.

3 Operator norm of sum of matrix Gaussian series
Lemma 6. Suppose {Xi}ni=1 are fixed and satisfy

max{∥
n∑

i=1

XiX
⊤
i ∥∞, ∥

n∑
i=1

X⊤
i Xi∥∞} ≤ C3n(M +N),

for some constant C3 > 0. Then, we have that

P

(∥∥∥∥∥ 1n
n∑

i=1

ϵiXi

∥∥∥∥∥
∞

≥

√
C3σ2

M +N

n
log

(
2(M +N)

δ

))
≤ δ (∀δ > 0).

See [3] for the proof. The assumption is satisfied if ∥Xi∥∞ ≤ C(
√
M +

√
N), which is true

with high probability if each element of Xi is i.i.d. Gaussian.
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3.1 Special case: i.i.d. Gaussian

Lemma 7. If each element of Xi is i.i.d. N(0, 1), then

E

[∥∥∥∥∥ 1n
n∑

i=1

ϵiXi

∥∥∥∥∥
∞

]
≤

√
M +

√
N√

n
,

and ∥∥∥∥∥ 1n
n∑

i=1

ϵiXi

∥∥∥∥∥
∞

≤ (1 + t)σ

√
M +

√
N√

n
t′,

with probability 1− 2 exp(−t2(
√
M +

√
N)2/2)− 1

t′ exp(−t′2/2) for all t, t′ > 0.

4 Convergence rate of trace norm regularized estimator
Combining lemmas shown above, we obtain the following theorem.

Theorem 8. Suppose {Xi}ni=1 are fixed and satisfy

max{∥
n∑

i=1

XiX
⊤
i ∥∞, ∥

n∑
i=1

X⊤
i Xi∥∞} ≤ C3n(M +N),

for some constant C3 > 0. Assume the number n of samples satisfies

n ≥

[
16C2

√
d∗

C1
(
√
M +

√
N)

]2
.

Let the regularization constant λn = 2

√
C3σ2M+N

n log
(

2(M+N)
δ

)
for some δ > 0. Then under

RSC condition (Assumption 1), there exists a universal constant c > 0 such that

∥Â−A∗∥2F ≤ c
C3σ

2

C4
1

d∗(M +N)

n
log

(
2(M +N)

δ

)
,

with probability 1− δ.
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