Fundamentals of Mathematical and Computing Sciences:
Applied Mathematical Science

Part III: Low rank matrix estimation

 (Lecture 4) Statistical propertyTaiji Suzuki (Room W707, post W8-46)
e-mail: suzuki.t.ct@m.titech.ac.jp

Today's topic:

- Convergence rate of the trace norm regularized estimator.

1 Preliminary

Model:

$$
y_{i}=\left\langle X_{i}, A^{*}\right\rangle+\epsilon_{i},
$$

where A^{*} is the true matrix and $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$. We assume that the rank of A^{*} is d^{*}. Estimator:

$$
\hat{A} \underset{A \in \mathbb{R}^{M \times N}}{\arg \min } \frac{1}{n}\|Y-\mathcal{X}(A)\|^{2}+\lambda_{n}\|A\|_{\mathrm{Tr}},
$$

where $Y=\left[y_{1}, \ldots, y_{n}\right]^{\top}$, and $\mathcal{X}(A)=\left[\left\langle X_{1}, A\right\rangle, \ldots,\left\langle X_{n}, A\right\rangle\right]^{\top}$.

Q: How rapidly does the estimator \hat{A} converge to A^{*} ?
A: Roughly speaking

$$
\left\|\hat{A}-A^{*}\right\|_{F}^{2}=O_{p}\left(\frac{d^{*}(M+N) \log (M N)}{n}\right) .
$$

This is much faster than the rate of the standard MLE, $O_{p}\left(\frac{M N}{n}\right)$, if $d^{*} \ll M, N$.

2 Restricted Strong Convexity

Assumption 1 (Restricted Strong Convexity (RSC)). $\exists C_{1}, C_{2}>0$ such that

$$
\frac{\|\mathcal{X}(A)\|}{\sqrt{n}} \geq C_{1}\|A\|_{F}-C_{2}\left(\frac{\sqrt{M}+\sqrt{N}}{\sqrt{n}}\right)\|A\|_{\mathrm{Tr}},
$$

for all $A \in \mathbb{R}^{M \times N}$.
Example 2. If each element of X_{i} is i.i.d. $N(0,1)$, then

$$
\frac{\|\mathcal{X}(A)\|}{\sqrt{n}} \geq \frac{1}{4}\|A\|_{F}-4\left(\frac{\sqrt{M}+\sqrt{N}}{\sqrt{n}}\right)\|A\|_{\mathrm{Tr}},
$$

for all $A \in \mathbb{R}^{M \times N}$, with probability at least $1-2 \exp (-n / 32)$.

This can be shown by using the following propositions.
Definition 3 (Gaussian process). A set of random variables $\left\{G_{x}\right\}_{x \in \mathcal{X}}$ on a set \mathcal{X} is called Gaussian process if for all finite combination $\left\{x_{1}, \ldots, x_{k}\right\} \subset \mathcal{X}$, the joint distribution of $\left(G_{x_{1}}, \ldots, G_{x_{k}}\right)$ obeys a multivariate Gaussian distribution.

Proposition 4 (Gordon-Slepian's Inequality [1]). Consider two centered Gaussian processes $\left\{G_{u, v}\right\}_{(u, v)}$ and $\left\{G_{u, v}^{\prime}\right\}_{(u, v)}$ indexed by $(u, v) \in \mathcal{U} \times \mathcal{V}$ ("centered" means $\mathrm{E}\left[G_{u, v}=0\right]$ for all $u, v)$. If G and G^{\prime} satisfy

$$
\begin{aligned}
\mathrm{E}\left[\left(G_{u, v}-G_{u^{\prime}, v^{\prime}}\right)^{2}\right] & \geq \mathrm{E}\left[\left(G_{u, v}^{\prime}-G_{u^{\prime}, v^{\prime}}^{\prime}\right)^{2}\right], \\
\mathrm{E}\left[\left(G_{u, v}-G_{u, v^{\prime}}\right)^{2}\right] & =\mathrm{E}\left[\left(G_{u, v}^{\prime}-G_{u, v^{\prime}}^{\prime}\right)^{2}\right],
\end{aligned}
$$

for all $(u, v),\left(u^{\prime}, v^{\prime}\right) \in \mathcal{U} \times \mathcal{V}$. Then

$$
\mathrm{E}\left[\inf _{u \in \mathcal{U}} \sup _{v \in \mathcal{V}} G_{u, v}\right] \leq \mathrm{E}\left[\inf _{u \in \mathcal{U}} \sup _{v \in \mathcal{V}} G_{u, v}^{\prime}\right] .
$$

Applying this lemma to $-G_{u, v},-G_{u, v}^{\prime}$ under an assumption that \mathcal{V} is a singleton, we obtain classical Slepian's inequality:

$$
\begin{aligned}
& \mathrm{E}\left[\left(G_{u}-G_{u^{\prime}}\right)^{2}\right] \geq \mathrm{E}\left[\left(G_{u}^{\prime}-G_{u^{\prime}}^{\prime}\right)^{2}\right] \quad\left(\forall u, u^{\prime} \in \mathcal{U}\right) \\
\Rightarrow & \mathrm{E}\left[\sup _{u} G_{u}\right] \geq \mathrm{E}\left[\sup _{u} G_{u}^{\prime}\right] .
\end{aligned}
$$

Proposition 5 (Gaussian concentration inequality). Let $X \in \mathbb{R}^{m}$ be i.i.d. $N(0,1)$ and f : $\mathbb{R}^{m} \rightarrow \mathbb{R}$ be Lipschitz continuous function with the continuity parameter $L,|f(x)-f(y)| \leq$ $L\|x-y\|$. Then,

$$
P(|f(X)-\mathrm{E}[f(X)]| \geq \delta) \leq 2 \exp \left(-\frac{\delta^{2}}{L^{2}}\right) \quad(\forall \delta>0)
$$

See Proposition 2.18 of [2] for the proof.

3 Operator norm of sum of matrix Gaussian series

Lemma 6. Suppose $\left\{X_{i}\right\}_{i=1}^{n}$ are fixed and satisfy

$$
\max \left\{\left\|\sum_{i=1}^{n} X_{i} X_{i}^{\top}\right\|_{\infty},\left\|\sum_{i=1}^{n} X_{i}^{\top} X_{i}\right\|_{\infty}\right\} \leq C_{3} n(M+N),
$$

for some constant $C_{3}>0$. Then, we have that

$$
P\left(\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} X_{i}\right\|_{\infty} \geq \sqrt{C_{3} \sigma^{2} \frac{M+N}{n} \log \left(\frac{2(M+N)}{\delta}\right)}\right) \leq \delta \quad(\forall \delta>0) .
$$

See [3] for the proof. The assumption is satisfied if $\left\|X_{i}\right\|_{\infty} \leq C(\sqrt{M}+\sqrt{N})$, which is true with high probability if each element of X_{i} is i.i.d. Gaussian.

3.1 Special case: i.i.d. Gaussian

Lemma 7. If each element of X_{i} is i.i.d. $N(0,1)$, then

$$
\mathrm{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} X_{i}\right\|_{\infty}\right] \leq \frac{\sqrt{M}+\sqrt{N}}{\sqrt{n}},
$$

and

$$
\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} X_{i}\right\|_{\infty} \leq(1+t) \sigma \frac{\sqrt{M}+\sqrt{N}}{\sqrt{n}} t^{\prime},
$$

with probability $1-2 \exp \left(-t^{2}(\sqrt{M}+\sqrt{N})^{2} / 2\right)-\frac{1}{t^{\prime}} \exp \left(-t^{\prime 2} / 2\right)$ for all $t, t^{\prime}>0$.

4 Convergence rate of trace norm regularized estimator

Combining lemmas shown above, we obtain the following theorem.
Theorem 8. Suppose $\left\{X_{i}\right\}_{i=1}^{n}$ are fixed and satisfy

$$
\max \left\{\left\|\sum_{i=1}^{n} X_{i} X_{i}^{\top}\right\|_{\infty},\left\|\sum_{i=1}^{n} X_{i}^{\top} X_{i}\right\|_{\infty}\right\} \leq C_{3} n(M+N)
$$

for some constant $C_{3}>0$. Assume the number n of samples satisfies

$$
n \geq\left[\frac{16 C_{2} \sqrt{d^{*}}}{C_{1}}(\sqrt{M}+\sqrt{N})\right]^{2}
$$

Let the regularization constant $\lambda_{n}=2 \sqrt{C_{3} \sigma^{2} \frac{M+N}{n} \log \left(\frac{2(M+N)}{\delta}\right)}$ for some $\delta>0$. Then under RSC condition (Assumption 1), there exists a universal constant $c>0$ such that

$$
\left\|\hat{A}-A^{*}\right\|_{F}^{2} \leq c \frac{C_{3} \sigma^{2}}{C_{1}^{4}} \frac{d^{*}(M+N)}{n} \log \left(\frac{2(M+N)}{\delta}\right)
$$

with probability $1-\delta$.

References

[1] Y. Gordon. Some inequalities for gaussian processes and applications. Israel Journal of Mathematics, 50(4):265-289, 1985.
[2] M. Ledoux. The Concentration of Measure Phenomenon, volume 89 of Mathematical Surveys and Monographs. American Methematical Society, 2001.
[3] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):389-434, 2012.

