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A basic idea to estimate the low rank matrix is given as follows:

min
A∈RM×N

n∑
i=1

(yi − ⟨Xi, A⟩)2 (1a)

s.t. rank(A) ≤ d. (1b)

In this lecture, three approaches are introduced.

• Singular value thresholding
• Trace norm regularization
• Bayes estimator

1 Singular value thresholding
Singular value thresholding is the most simple method which can be used in the setting that
all elements of A∗

ij are observed with observation noise. In that setting, Eq. (1) is reformulated
as

min
A∈RM×N

n∑
i=1

(Yij −Aij)
2, (2a)

s.t. rank(A) ≤ d. (2b)

Here, Yij = A∗
ij + ϵij where ϵij is observation noise. This problem can be solved analytically

by using singular value decomposition.
Let p = min{M,N}.

Theorem 1 (Singular Value Decomposition, SVD). For arbitrary A ∈ RM×N , there exist
orthonormal matrices U ∈ RM×p and V ∈ RN×p (U⊤U = I and V ⊤V = I), and a diagonal
matrix Σ ∈ Rp×p, such that

A = UΣV ⊤,

where Σ ⪰ O.

This decomposition is called Singular Value Decomposition (SVD), and the diagonal ele-
ments σ1, σ2, . . . , σp in Σ are called singular values.
A symmetric matrix can be diagonalized as follows.

Lemma 2. For a real symmetric matrix A ∈ RM×M , there exist an orthogonal matrix U ∈ RM

and a diagonal matrix Σ ∈ RM such that

A = UΣU⊤.
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Σ is not necessarily positive semi-definite. But, by setting V ⊤ =
Diag(sign(σ1), . . . , sign(σp))U

⊤, we have SVD of A as A = U |Σ|V ⊤.

Remark 3. A = UΣU⊤ (U is orthogonal, Σ is diagonal) if and only if A is normal, that is,
A⊤A = AA⊤.

Theorem 4. Let A,B ∈ RM×M be symmetric matrices, and ∥A∥F =
√∑

i,j A
2
ij be the

Frobenius norm. If σ1 ≥ σ2 ≥ · · · ≥ σM are the eigenvalues of A and γ1 ≥ γ2 ≥ · · · ≥ γM are
the eigenvalues of B, then

M∑
i=1

(σi − γi)
2 = min

τ :permutation

M∑
i=1

(σi − γτ(i))
2 ≤ ∥A−B∥2F .

Proof. See Corollary 6.3.8 of [1] and its proof.

We are ready to obtain the solution of the problem (2).

Lemma 5. For arbitrary A ∈ RM×N with SVD A = UΣV ⊤, it holds that[
O A
A⊤ O

]
=

[
U −U
V V

] [
Σ O
O −Σ

] [
U −U
V V

]⊤
.

One can easily check that

[
U −U
V V

]
is an orthonormal matrix. Thus, the lemma shows

that the eigenvalues of the symmetric matrix

[
O A
A⊤ O

]
is given by σ1 ≥ · · · ≥ σp ≥ 0 = · · · =

0 ≥ −σp ≥ · · · ≥ −σ1 where {σi} are the singular values of A.

Theorem 6 (Low rank approximation of an arbitrary real matrix). Let A ∈ RM×N be an
arbitrary real matrix. Then the minimum of

min
B∈RM×N

∥A−B∥2F , s.t. rank(B) ≤ d,

is attained by
B = UDiag(σ1, . . . , σd, 0, . . . , 0)V

⊤

where A = UDiag(σ1, . . . , σp)V
⊤ is the SVD of A. The optimal objective is given by∑p

j=d+1 σ
2
j .

Proof. Note that

∥A−B∥2F =
1

2

∥∥∥∥[ O A
A⊤ O

]
−
[
O B
B⊤ O

]∥∥∥∥2
F

.

By Theorem 4, the RHS is lower bounded by
∑p

j=1(σj − γj)
2, where {σj} and {γj} are the

singular values of A and B in decreasing order. This lower bound is minimized by γj = σj (j =
1, . . . , d) and γj = 0 (j > d) (note that rank(B) is at most d). This minimum objective is
attained by B = UDiag(σ1, . . . , σd, 0, . . . , 0)V

⊤.

This theorem gives the solution of the problem (2):

(Singular value thresholding) Â = UDiag(σ1, . . . , σd, 0, . . . , 0)V
⊤,
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where Y = UDiag(σ1, . . . , σp)V
⊤ is SVD of Y .

Finally, the following corollary gives low rank approximation of a symmetric matrix.

Corollary 7 (Low rank approximation of a symmetric matrix). Let A ∈ RM×M be a sym-
metric matrix. Then the minimum of

min
B∈RM×M :symmetric

∥A−B∥2F , s.t. rank(B) ≤ d,

is attained by B = UDiag(σ1, . . . , σd, 0, . . . , 0)U
⊤ where σ1, . . . , σp are the eigenvalues of A

such that |σ1| ≥ |σ2| ≥ · · · ≥ |σp|. The optimal objective is given by
∑p

j=d+1 σ
2
j .

2 Trace norm regularization
Singular value thresholding can be applied just a simple case. In general settings, the opti-
mization problem can not be analytically solved. Moreover the problem is not convex.
The trace norm regularization technique gives a computationally tractable alternative of

the problem (1). It is a convex relaxation of the original problem.
Trace norm regularization:

min
A∈RM×M

∥Y −X (A)∥2 s.t. ∥A∥Tr ≤ C,

or

min
A∈RM×M

∥Y −X (A)∥2 + λ∥A∥Tr.

Here ∥A∥Tr = Tr[(A⊤A)
1
2 ] is called trace norm. Note that

∥A∥Tr = Tr[(A⊤A)
1
2 ] = Tr[(UΣ(A)V ⊤V Σ(A)U⊤)

1
2 ] = Tr[(UΣ(A)2U⊤)

1
2 ] = Tr[UΣ(A)U⊤]

=

p∑
j=1

σj .

⋆ Trace norm is the sum of singular values.

Theorem 8.

• ∥cA∥Tr = |c|∥A∥Tr (∀c ∈ R),
• ∥A+B∥Tr ≤ ∥A∥Tr + ∥B∥Tr,
• ∥A∥Tr = 0 ⇔ A = O .

Proof. See Corollary 4.3.27 of [1].

This theorem says that trace “norm” is actually norm.

Remark 9. Every orthogonal invariant norm, ∥A∥M (∥A∥M = ∥UAV ∥M for all orthogonal
matrices U, V ), satisfies

∥A−B∥M ≥ ∥Σ(A)− Σ(B)∥M , (5)

where Σ(A) and Σ(B) are diagonal matrices such that the singular values of A and B are on
the diagonal elements in decreasing order (see Theorem 7.4.51 of [1]).
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We have already seen that ∥ · ∥F and ∥ · ∥Tr satisfy Eq. (5).

Q: Why trace norm?
A: Because it is the tight convex envelope of the rank function.

Theorem 10. Trace norm is the tight convex envelope of the rank function in the set of
{A ∈ RM×N | ∥A∥∞ ≤ 1}, where ∥A∥∞ is the maximum singular value.

Proof. Let Ψ∗ : RM×N → R ∪ {±∞} be the convex conjugate of a function Ψ : RM×N →
R ∪ {±∞}, that is,

Ψ∗(Z) := sup
A∈RM×N

{⟨A,Z⟩ −Ψ(A)}.

It is known that Ψ∗∗ is the convex envelope of Ψ (Theorem 12.2 of [2]). By setting

Ψ(A) :=

{
∥A∥Tr (∥A∥∞ ≤ 1),

0 (otherwise),

we can check the assertion.

By extending ∥ · ∥Tr to outside of the box {A ∈ RM×N | ∥A∥∞ ≤ 1}, we can see that ∥ · ∥Tr
is a nice convex approximation of the rank function.

⋆ The solution of the trace norm regularized minimization problem is actually low rank (c.f.
L1-regularization).

3 Bayes estimator� �
• Construct a prior distribution π(A).
↓
• Compute the likelihood of Dn = {(Xi, Yi)}ni=1:

∏n
i=1 p(Yi|Xi, A).

↓
• Obtain the posterior distribution:

π(A|Dn) =

∏n
i=1 p(Yi|Xi, A)π(A)∫ ∏n
i=1 p(Yi|Xi, A)π(A)dA

.

� �
The posterior mean is obtained by

Â =

∫
Aπ(A|Dn)dA.

How to obtain the estimator based on the posterior distribution is determined by which loss
are considered. More precisely, the Bayes estimator should minimize the Bayes risk:∫

EDn|A[ℓ(δ(Dn), A)]π(A)dA,

where δ(Dn) is an estimator constructed from the data Dn and ℓ is a loss function that
measures how δ(Dn) is close to A (e.g., KL-divergence and Frobenius norm). The posterior
mean corresponds to ℓ(δ(Dn), A) = ∥δ(Dn)−A∥2F .
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The followings are examples of prior distributions of low rank matrices.� �
Let 0 < ξ < 1 and σp > 0 be hyper parameters.

d ∼ Mult(π(1), . . . , π(p)) where π(d) = ξd
(

1− ξ

ξ − ξp+1

)
,

Ui,j |d ∼ N(0, σ2
p) (i = 1, . . . , N, j = 1, . . . , d),

Vi,j |d ∼ N(0, σ2
p) (i = 1, . . . ,M, j = 1, . . . , d).

Set A = UV ⊤.� �� �
Let 0 < a, b and σp > 0 be hyper parameters.

γj ∼ Γ(a, b) (j = 1, . . . , p),

Ui,j ∼ N(0, σ2
p) (i = 1, . . . , N, j = 1, . . . , p),

Vi,j ∼ N(0, σ2
p) (i = 1, . . . ,M, j = 1, . . . , p).

Set A = U

γ−1
1

. . .

γ−1
p

V ⊤.

� �
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