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A basic idea to estimate the low rank matrix is given as follows:

n

min (5 — (X6, 4))° (1a)

s.t.  rank(A) <d. (1b)

In this lecture, three approaches are introduced.

e Singular value thresholding
e Trace norm regularization
e Bayes estimator

1 Singular value thresholding

Singular value thresholding is the most simple method which can be used in the setting that
all elements of A, are observed with observation noise. In that setting, Eq. (1) is reformulated
as

n

min > (Vi — Aij)?, (2a)

AERMXN =1
s.t.  rank(A4) <d. (2b)

Here, Y;; = Aj; + €;; where ¢;; is observation noise. This problem can be solved analytically
by using singular value decomposition.
Let p = min{M, N}.

Theorem 1 (Singular Value Decomposition, SVD). For arbitrary A € RM*N  there erist
orthonormal matrices U € RM*P and V € RN*P (UTU =1 and V'V = I), and a diagonal
matriz 3 € RPXP | such that

A=UXVT,

where X = O.

This decomposition is called Singular Value Decomposition (SVD), and the diagonal ele-
ments 01,02,...,0, in X are called singular values.
A symmetric matrix can be diagonalized as follows.

Lemma 2. For a real symmetric matriz A € RM*M there exist an orthogonal matriz U € RM
and a diagonal matriz ¥ € RM such that

A=UxUT.



> is mnot necessarily positive semi-definite. But, by setting VT
Diag(sign(oy), . . .,sign(o,))U ", we have SVD of A as A=U|X|V .

Remark 3. A=UXU" (U is orthogonal, ¥ is diagonal) if and only if A is normal, that is,
ATA=AAT.

Theorem 4. Let A,B € RM*M pe symmetric matrices, and ||A||r = \/ i A3 be the

Frobenius norm. If o9 > 09 > -+ > opr are the eigenvalues of A and v, > yo > -+ >y are
the eigenvalues of B, then

M M

Doimy)t= min S (o= ) < |14 - Bl
i=1 ' i=

Proof. See Corollary 6.3.8 of [1] and its proof. O
We are ready to obtain the solution of the problem (2).
Lemma 5. For arbitrary A € RM*N with SVD A =UXV", it holds that

-1 e SV

One can easily check that [V _V ] is an orthonormal matrix. Thus, the lemma shows

. . . Al . .
that the eigenvalues of the symmetric matrix } isgivenby oy > -+ >0, >0="---=

(@)

AT O
0> —0, >--- > —0oy where {0;} are the singular values of A.

Theorem 6 (Low rank approximation of an arbitrary real matrix). Let A € RM*N be an
arbitrary real matriz. Then the minimum of

i A— B|%, s.t k(B) < d,
plin ol 7, s.t. rank(B) <
1s attained by
B = UDiag(oy,...,04,0,...,0)V"

where A = UDiag(ay,...,0,)V" is the SVD of A. The optimal objective is given by
P 2
j=d+19;"

Proof. Note that
2
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— 2 — — —
la-si=3 |l o] - |5 o
By Theorem 4, the RHS is lower bounded by Z?:l((’j — )2, where {o;} and {v,} are the
singular values of A and B in decreasing order. This lower bound is minimized by v; = o; (j =
1,...,d) and v; = 0 (j > d) (note that rank(B) is at most d). This minimum objective is
attained by B = UDiag(o1,...,04,0,...,0)V T, O

F

This theorem gives the solution of the problem (2):

(Singular value thresholding) A= UDiag(o1,...,04,0,...,0)V ",



where Y = UDiag(o1,...,0,)V " is SVD of Y.

Finally, the following corollary gives low rank approximation of a symmetric matrix.

Corollary 7 (Low rank approximation of a symmetric matrix). Let A € RM*M pe g sym-
metric matriz. Then the minimum of

min |A— B||%, s.t. rank(B) <d,

BeRM XM :gymmetric

is attained by B = UDiag(oy,...,04,0,...,00U" where oy,..., o, are the eigenvalues of A
such that |o1| > |oa| > -+ > |op|. The optimal objective is given by 3°5_, | o7

2 Trace norm regularization

Singular value thresholding can be applied just a simple case. In general settings, the opti-
mization problem can not be analytically solved. Moreover the problem is not convex.

The trace norm regularization technique gives a computationally tractable alternative of
the problem (1). It is a convex relaxation of the original problem.
Trace norm regularization:

min Y — X(A)||2 st ||A|m < C,
AeRMXM

or

min ||V — X(A)|? + || 4|

AeRM XM

Here || Al = Tr[(AT A)2] is called trace norm. Note that

|A|me = Te[(ATA)2] = TH(US(A)VTVSAU )] = Te[(US(A)2U ) 2] = T[US(A)UT]
= 210']

* Trace norm is the sum of singular values.
Theorem 8.

* |leAllm = [ef[[A (Ve eR),
* [|A+ Bt < [[Allze + [|Bl|rx,
L] HAHTr:O &S A=0.

Proof. See Corollary 4.3.27 of [1]. O
This theorem says that trace “norm” is actually norm.

Remark 9. Every orthogonal invariant norm, ||Allar (||Allar = [|[UAV ||amr for all orthogonal
matrices U,V ), satisfies
1A = Blla = [|3(A) = X(B)][ar, ()

where X(A) and X(B) are diagonal matrices such that the singular values of A and B are on
the diagonal elements in decreasing order (see Theorem 7.4.51 of [1]).
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We have already seen that || - ||p and || - [|1x satisfy Eq. (5).

Q: Why trace norm?
A: Because it is the tight convex envelope of the rank function.

Theorem 10. Trace norm is the tight convex envelope of the rank function in the set of
{A e RMXN | || Alloo < 1}, where ||A| oo is the mazimum singular value.

Proof. Let ¥* : RM*N 5 R U {+00} be the convex conjugate of a function ¥ : RM*N
R U {+£o0}, that is,
V()= sup {(4,2)— B(A)}

AERM x N
It is known that U** is the convex envelope of ¥ (Theorem 12.2 of [2]). By setting

T(A) = {”AHTY (14] o < 1),
. 0 (otherwise),

we can check the assertion. ]

By extending || - |1y to outside of the box {A € RM*N | || Ao < 1}, we can see that || - ||y
is a nice convex approximation of the rank function.

* The solution of the trace norm regularized minimization problem is actually low rank (c.f.
L;-regularization).

3 Bayes estimator

4 M
e Construct a prior distribution w(A).
l
e Compute the likelihood of D,, = {(X;,Y;)}y: [, p(Yi|X;, A).
!

e Obtain the posterior distribution:

T p(Yil X, A)w(A)
m(A|Dy) = T, p(Yi[X;, Ayr(A)dA”
L J

The posterior mean is obtained by

A= /Aw(A|Dn)dA.

How to obtain the estimator based on the posterior distribution is determined by which loss
are considered. More precisely, the Bayes estimator should minimize the Bayes risk:

[ EpL a0, An( )4,
where 0(D,,) is an estimator constructed from the data D,, and ¢ is a loss function that
measures how 6(D,,) is close to A (e.g., KL-divergence and Frobenius norm). The posterior

mean corresponds to £(§(D,,), A) = ||6(Dy,,) — Al|%.
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The followings are examples of prior distributions of low rank matrices.

\
Let 0 <& <1 and o > 0 be hyper parameters.
af 1-6€
d ~ Mult(m(1),...,7(p)) where 7(d) = ¢ € @)
Uijld~N(0,02) (i=1,...,N, j=1,...,d),
Vijld~N(0,02) (i=1,...,M, j=1,...,d).
Set A=UV'.
N /
~
Let 0 < a,b and o, > 0 be hyper parameters.
v ~T(a,b) (j=1,...,p),
Uj ~N(0,02) (i=1,...,N, j=1,...,p),
Vij~N(,03) (i=1,...,M, j=1,...,p).
"
Set A=U v
o
- y
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