Fundamentals of Mathematical and Computing Sciences:
Applied Mathematical Science

Part III: Low rank matrix estimation (Lecture 2) Estimation methods

2014-7-3

Taiji Suzuki (Room W707, post W8-46)
e-mail: suzuki.t.ct@m.titech.ac.jp
A basic idea to estimate the low rank matrix is given as follows:

$$
\begin{align*}
\min _{A \in \mathbb{R}^{M \times N}} & \sum_{i=1}^{n}\left(y_{i}-\left\langle X_{i}, A\right\rangle\right)^{2} \tag{1a}\\
\text { s.t. } & \operatorname{rank}(A) \leq d . \tag{1b}
\end{align*}
$$

In this lecture, three approaches are introduced.

- Singular value thresholding
- Trace norm regularization
- Bayes estimator

1 Singular value thresholding

Singular value thresholding is the most simple method which can be used in the setting that all elements of $A_{i j}^{*}$ are observed with observation noise. In that setting, Eq. (1) is reformulated as

$$
\begin{align*}
\min _{A \in \mathbb{R}^{M \times N}} & \sum_{i=1}^{n}\left(Y_{i j}-A_{i j}\right)^{2}, \tag{2a}\\
\text { s.t. } & \operatorname{rank}(A) \leq d \tag{2b}
\end{align*}
$$

Here, $Y_{i j}=A_{i j}^{*}+\epsilon_{i j}$ where $\epsilon_{i j}$ is observation noise. This problem can be solved analytically by using singular value decomposition.

Let $p=\min \{M, N\}$.
Theorem 1 (Singular Value Decomposition, SVD). For arbitrary $A \in \mathbb{R}^{M \times N}$, there exist orthonormal matrices $U \in \mathbb{R}^{M \times p}$ and $V \in \mathbb{R}^{N \times p}\left(U^{\top} U=I\right.$ and $\left.V^{\top} V=I\right)$, and a diagonal matrix $\Sigma \in \mathbb{R}^{p \times p}$, such that

$$
A=U \Sigma V^{\top}
$$

where $\Sigma \succeq O$.
This decomposition is called Singular Value Decomposition (SVD), and the diagonal elements $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}$ in Σ are called singular values.

A symmetric matrix can be diagonalized as follows.
Lemma 2. For a real symmetric matrix $A \in \mathbb{R}^{M \times M}$, there exist an orthogonal matrix $U \in \mathbb{R}^{M}$ and a diagonal matrix $\Sigma \in \mathbb{R}^{M}$ such that

$$
A=U \Sigma U^{\top}
$$

Σ is not necessarily positive semi-definite. But, by setting $V^{\top}=$ $\operatorname{Diag}\left(\operatorname{sign}\left(\sigma_{1}\right), \ldots, \operatorname{sign}\left(\sigma_{p}\right)\right) U^{\top}$, we have SVD of A as $A=U|\Sigma| V^{\top}$.

Remark 3. $A=U \Sigma U^{\top}$ (U is orthogonal, Σ is diagonal) if and only if A is normal, that is, $A^{\top} A=A A^{\top}$.
Theorem 4. Let $A, B \in \mathbb{R}^{M \times M}$ be symmetric matrices, and $\|A\|_{F}=\sqrt{\sum_{i, j} A_{i j}^{2}}$ be the Frobenius norm. If $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{M}$ are the eigenvalues of A and $\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{M}$ are the eigenvalues of B, then

$$
\sum_{i=1}^{M}\left(\sigma_{i}-\gamma_{i}\right)^{2}=\min _{\tau: \text { permutation }} \sum_{i=1}^{M}\left(\sigma_{i}-\gamma_{\tau(i)}\right)^{2} \leq\|A-B\|_{F}^{2}
$$

Proof. See Corollary 6.3.8 of [1] and its proof.
We are ready to obtain the solution of the problem (2).
Lemma 5. For arbitrary $A \in \mathbb{R}^{M \times N}$ with $S V D A=U \Sigma V^{\top}$, it holds that

$$
\left[\begin{array}{cc}
O & A \\
A^{\top} & O
\end{array}\right]=\left[\begin{array}{cc}
U & -U \\
V & V
\end{array}\right]\left[\begin{array}{cc}
\Sigma & O \\
O & -\Sigma
\end{array}\right]\left[\begin{array}{cc}
U & -U \\
V & V
\end{array}\right]^{\top}
$$

One can easily check that $\left[\begin{array}{cc}U & -U \\ V & V\end{array}\right]$ is an orthonormal matrix. Thus, the lemma shows that the eigenvalues of the symmetric matrix $\left[\begin{array}{cc}O & A \\ A^{\top} & O\end{array}\right]$ is given by $\sigma_{1} \geq \cdots \geq \sigma_{p} \geq 0=\cdots=$ $0 \geq-\sigma_{p} \geq \cdots \geq-\sigma_{1}$ where $\left\{\sigma_{i}\right\}$ are the singular values of A.

Theorem 6 (Low rank approximation of an arbitrary real matrix). Let $A \in \mathbb{R}^{M \times N}$ be an arbitrary real matrix. Then the minimum of

$$
\min _{B \in \mathbb{R}^{M \times N}}\|A-B\|_{F}^{2}, \quad \text { s.t. } \quad \operatorname{rank}(B) \leq d
$$

is attained by

$$
B=U \operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{d}, 0, \ldots, 0\right) V^{\top}
$$

where $A=U \operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) V^{\top}$ is the $S V D$ of A. The optimal objective is given by $\sum_{j=d+1}^{p} \sigma_{j}^{2}$.

Proof. Note that

$$
\|A-B\|_{F}^{2}=\frac{1}{2}\left\|\left[\begin{array}{cc}
O & A \\
A^{\top} & O
\end{array}\right]-\left[\begin{array}{cc}
O & B \\
B^{\top} & O
\end{array}\right]\right\|_{F}^{2}
$$

By Theorem 4, the RHS is lower bounded by $\sum_{j=1}^{p}\left(\sigma_{j}-\gamma_{j}\right)^{2}$, where $\left\{\sigma_{j}\right\}$ and $\left\{\gamma_{j}\right\}$ are the singular values of A and B in decreasing order. This lower bound is minimized by $\gamma_{j}=\sigma_{j}(j=$ $1, \ldots, d)$ and $\gamma_{j}=0(j>d)$ (note that $\operatorname{rank}(B)$ is at most d). This minimum objective is attained by $B=U \operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{d}, 0, \ldots, 0\right) V^{\top}$.

This theorem gives the solution of the problem (2):

$$
\text { (Singular value thresholding) } \quad \hat{A}=U \operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{d}, 0, \ldots, 0\right) V^{\top}
$$

where $Y=U \operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) V^{\top}$ is SVD of Y.

Finally, the following corollary gives low rank approximation of a symmetric matrix.
Corollary 7 (Low rank approximation of a symmetric matrix). Let $A \in \mathbb{R}^{M \times M}$ be a symmetric matrix. Then the minimum of

$$
\min _{B \in \mathbb{R}^{M \times M}: \text { symmetric }}\|A-B\|_{F}^{2}, \quad \text { s.t. } \operatorname{rank}(B) \leq d
$$

is attained by $B=U \operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{d}, 0, \ldots, 0\right) U^{\top}$ where $\sigma_{1}, \ldots, \sigma_{p}$ are the eigenvalues of A such that $\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots \geq\left|\sigma_{p}\right|$. The optimal objective is given by $\sum_{j=d+1}^{p} \sigma_{j}^{2}$.

2 Trace norm regularization

Singular value thresholding can be applied just a simple case. In general settings, the optimization problem can not be analytically solved. Moreover the problem is not convex.

The trace norm regularization technique gives a computationally tractable alternative of the problem (1). It is a convex relaxation of the original problem.
Trace norm regularization:

$$
\min _{A \in \mathbb{R}^{M \times M}}\|Y-\mathcal{X}(A)\|^{2} \text { s.t. }\|A\|_{\operatorname{Tr}} \leq C
$$

or

$$
\min _{A \in \mathbb{R}^{M \times M}}\|Y-\mathcal{X}(A)\|^{2}+\lambda\|A\|_{\mathrm{Tr}}
$$

Here $\|A\|_{\operatorname{Tr}}=\operatorname{Tr}\left[\left(A^{\top} A\right)^{\frac{1}{2}}\right]$ is called trace norm. Note that

$$
\begin{aligned}
\|A\|_{\operatorname{Tr}} & =\operatorname{Tr}\left[\left(A^{\top} A\right)^{\frac{1}{2}}\right]=\operatorname{Tr}\left[\left(U \Sigma(A) V^{\top} V \Sigma(A) U^{\top}\right)^{\frac{1}{2}}\right]=\operatorname{Tr}\left[\left(U \Sigma(A)^{2} U^{\top}\right)^{\frac{1}{2}}\right]=\operatorname{Tr}\left[U \Sigma(A) U^{\top}\right] \\
& =\sum_{j=1}^{p} \sigma_{j}
\end{aligned}
$$

* Trace norm is the sum of singular values.

Theorem 8.

- $\|c A\|_{\operatorname{Tr}}=|c|\|A\|_{\operatorname{Tr}} \quad(\forall c \in \mathbb{R})$,
- $\|A+B\|_{\operatorname{Tr}} \leq\|A\|_{\operatorname{Tr}}+\|B\|_{\operatorname{Tr}}$,
- $\|A\|_{\mathrm{Tr}}=0 \Leftrightarrow A=O$.

Proof. See Corollary 4.3.27 of [1].
This theorem says that trace "norm" is actually norm.
Remark 9. Every orthogonal invariant norm, $\|A\|_{M}\left(\|A\|_{M}=\|U A V\|_{M}\right.$ for all orthogonal matrices $U, V)$, satisfies

$$
\begin{equation*}
\|A-B\|_{M} \geq\|\Sigma(A)-\Sigma(B)\|_{M} \tag{5}
\end{equation*}
$$

where $\Sigma(A)$ and $\Sigma(B)$ are diagonal matrices such that the singular values of A and B are on the diagonal elements in decreasing order (see Theorem 7.4.51 of [1]).

We have already seen that $\|\cdot\|_{F}$ and $\|\cdot\|_{\text {Tr }}$ satisfy Eq. (5).

Q: Why trace norm?

A: Because it is the tight convex envelope of the rank function.

Theorem 10. Trace norm is the tight convex envelope of the rank function in the set of $\left\{A \in \mathbb{R}^{M \times N} \mid\|A\|_{\infty} \leq 1\right\}$, where $\|A\|_{\infty}$ is the maximum singular value.

Proof. Let $\Psi^{*}: \mathbb{R}^{M \times N} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be the convex conjugate of a function $\Psi: \mathbb{R}^{M \times N} \rightarrow$ $\mathbb{R} \cup\{ \pm \infty\}$, that is,

$$
\Psi^{*}(Z):=\sup _{A \in \mathbb{R}^{M \times N}}\{\langle A, Z\rangle-\Psi(A)\} .
$$

It is known that $\Psi^{* *}$ is the convex envelope of Ψ (Theorem 12.2 of [2]). By setting

$$
\Psi(A):= \begin{cases}\|A\|_{\operatorname{Tr}} & \left(\|A\|_{\infty} \leq 1\right), \\ 0 & \text { (otherwise) },\end{cases}
$$

we can check the assertion.
By extending $\|\cdot\|_{\operatorname{Tr}}$ to outside of the box $\left\{A \in \mathbb{R}^{M \times N} \mid\|A\|_{\infty} \leq 1\right\}$, we can see that $\|\cdot\|_{\mathrm{Tr}}$ is a nice convex approximation of the rank function.

* The solution of the trace norm regularized minimization problem is actually low rank (c.f. L_{1}-regularization).

3 Bayes estimator

- Construct a prior distribution $\pi(A)$.
- Compute the likelihood of $D_{n}=\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}: \prod_{i=1}^{n} p\left(Y_{i} \mid X_{i}, A\right)$.
\downarrow
- Obtain the posterior distribution:

$$
\pi\left(A \mid D_{n}\right)=\frac{\prod_{i=1}^{n} p\left(Y_{i} \mid X_{i}, A\right) \pi(A)}{\int \prod_{i=1}^{n} p\left(Y_{i} \mid X_{i}, A\right) \pi(A) \mathrm{d} A} .
$$

The posterior mean is obtained by

$$
\hat{A}=\int A \pi\left(A \mid D_{n}\right) \mathrm{d} A .
$$

How to obtain the estimator based on the posterior distribution is determined by which loss are considered. More precisely, the Bayes estimator should minimize the Bayes risk:

$$
\int \mathrm{E}_{D_{n} \mid A}\left[\ell\left(\delta\left(D_{n}\right), A\right)\right] \pi(A) \mathrm{d} A,
$$

where $\delta\left(D_{n}\right)$ is an estimator constructed from the data D_{n} and ℓ is a loss function that measures how $\delta\left(D_{n}\right)$ is close to A (e.g., KL-divergence and Frobenius norm). The posterior mean corresponds to $\ell\left(\delta\left(D_{n}\right), A\right)=\left\|\delta\left(D_{n}\right)-A\right\|_{F}^{2}$.

The followings are examples of prior distributions of low rank matrices.
Let $0<\xi<1$ and $\sigma_{\mathrm{p}}>0$ be hyper parameters.

$$
\begin{array}{rl}
d & \sim \operatorname{Mult}(\pi(1), \ldots, \pi(p)) \text { where } \pi(d)=\xi^{d}\left(\frac{1-\xi}{\xi-\xi^{p+1}}\right), \\
U_{i, j} \mid d & \sim N\left(0, \sigma_{\mathrm{p}}^{2}\right) \quad(i=1, \ldots, N, j=1, \ldots, d) \\
V_{i, j} \mid d & \sim N\left(0, \sigma_{\mathrm{p}}^{2}\right) \quad(i=1, \ldots, M, j=1, \ldots, d) \\
\text { Set } A & A=U V^{\top} .
\end{array}
$$

Let $0<a, b$ and $\sigma_{\mathrm{p}}>0$ be hyper parameters.

$$
\begin{aligned}
\gamma_{j} & \sim \Gamma(a, b) \quad(j=1, \ldots, p) \\
U_{i, j} & \sim N\left(0, \sigma_{\mathrm{p}}^{2}\right) \quad(i=1, \ldots, N, j=1, \ldots, p) \\
V_{i, j} & \sim N\left(0, \sigma_{\mathrm{p}}^{2}\right) \quad(i=1, \ldots, M, j=1, \ldots, p) \\
\text { Set } & A=U\left(\begin{array}{lll}
\gamma_{1}^{-1} & \\
& \ddots & \\
& & \gamma_{p}^{-1}
\end{array}\right) V^{\top} .
\end{aligned}
$$

References

[1] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, New York, 1985.
[2] G. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

