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Outline of the Lecture
This course introduces several basic concepts of mathematical optimization, probability and
statistics, and is intended to provide key knowledge necessary for advanced study in Mathe-
matical and Computing Sciences.

Outline of this part (3rd part)
This part gives basic knowledges of low rank matrix estimation problems. Low rank ma-
trix estimation has various applications such as computer vision, recommendation system,
and reduced rank regression. In the series of lectures, problem formulation, methodologies,
computational method and statistical properties are shown.

Lecture plan:

1. From vector to matrix: Introduction to sparse estimation and low rank matrix estima-
tion.

2. Estimation method: Statistical methodologies for estimating low rank matrix.
3. Computational method: Optimization method and sampling method.
4. Statistical property: Estimation accuracy, measure concentration of matrix valued ran-

dom variables.
5. Advanced topics.

Evaluation: report.

References
1. Tropp, J. (2012). User-friendly tail bounds for sums of random matrices. Foundations

of Computational Mathematics, 12, 389–434.
2. Rohde, A., and Tsybakov, A. B. (2011). Estimation of high-dimensional low-rank ma-

trices. The Annals of Statistics, 39, 887–930.
3. Negahban, S., and Wainwright, M. J. (2012). Restricted strong convexity and weighted

matrix completion: Optimal bounds with noise. Journal of Machine Learning Research,
13, 1665–1697.

4. Babacan, S. D., Luessi, M., Molina, R., and Katsaggelos, A. K. (2012). Sparse bayesian
methods for low-rank matrix. IEEE Transactions on Signal Processing, 60, 964–3977.

1



1 Linear regression
Before we are going into the low rank matrix estimation, we briefly review the vector estimation
problem.

Given fixed covariates X =


x⊤
1

x⊤
2
...
x⊤
n

 ∈ Rn×p, we observe

Y = Xβ∗ + ϵ, (regression)

where Y = [y1, . . . , yn]
⊤ ∈ Rn (dependent variable, response) and ϵ = [ϵ1, . . . , ϵn]

⊤ ∈ Rn

(noise). We assume that {ϵi}ni=1 is i.i.d. random variable with mean 0 and variance σ2

(E[ϵi] = 0,E[ϵ2i ] = σ2). We observe {(xi, yi)}ni=1, and want to estimate β∗ (or Xβ∗) from the
observed data.
There are many methods to estimate β∗, for example

• Least squares estimator.
• Ridge regression.
• Stein’s shrinkage estimator.
• Lasso.

2 Least squares estimator

2.1 Definition of least squares estimator

β̂LS := argmin
β∈Rp

∥Y −Xβ∥2 = argmin
β∈Rp

n∑
i=1

(yi − x⊤
i β)

2.

For simplicity, we assume that X⊤X ≻ O. Then β̂LS can be expressed as

β̂LS = (X⊤X)−1X⊤Y.

(∵) β̂LS satisfies

∇β∥Y −Xβ∥2|β=β̂LS
= 0

⇔X⊤(Xβ̂LS − Y ) = 0

⇔β̂LS = (X⊤X)−1X⊤Y.

2.2 Statistical properties of least squares estimator

• β̂LS is an unbiased estimator:

EY |X [β̂LS] = β∗.

(∵) EY |X [β̂LS] = EY |X [(X⊤X)−1X⊤Y ] = (X⊤X)−1X⊤Xβ∗ = β∗.
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• Variance (variance and covariance matrix) of β̂LS is given by

Var(β̂LS) = EY |X [(β̂LS − β∗)(β̂LS − β∗)⊤] = (X⊤X)−1σ2.

(∵) EY |X [(β̂LS − β∗)(β̂LS − β∗)⊤]

=EY |X [{(X⊤X)−1X⊤(Xβ∗ + ϵ)− β∗}{(X⊤X)−1X⊤(Xβ∗ + ϵ)− β∗}⊤]

=EY |X [{(X⊤X)−1X⊤ϵ}{(X⊤X)−1X⊤ϵ}⊤] = (X⊤X)−1X⊤X(X⊤X)−1σ2

=(X⊤X)−1σ2.

This is minimum variance among all unbiased estimator (discussed in the following).

2.3 Least squares estimator as an maximum likelihood estimator

Here assume that ϵi is generated from Gaussian distribution (N(0, σ2)). Remind that the
probability density function of yi for β

∗ = β is given by

p(yi|β) =
1√
2πσ2

exp

(
− (yi − x⊤

i β)
2

2σ2

)
,

because of the normality of the noise. Thus the log-likelihood of β is given by

log
n∏

i=1

p(yi|β) = −
n∑

i=1

(yi − x⊤
i β)

2

2σ2
− n log(

√
2πσ2).

Therefore, by maximizing the log-likelihood, we obtain the maximum likelihood estimator

β̂MLE = (X⊤X)−1X⊤Y . One can observe that

β̂LS = β̂MLE.

Theorem 1 (Cramer-Rao’s Inequality). For all unbiased estimator β̂, we have

Var(β̂) = EY |X [(β̂ − β∗)(β̂ − β∗)⊤] ⪰ EY |X [∇β log p(Y |β)∇⊤
β log p(Y |β)]−1|β=β∗ (1)

Here, the right hand side of Eq. (1) is the inverse of Fisher information matrix.
Notice that

EY |X [∇β log p(Y |β)∇⊤
β log p(Y |β)]|β=β∗ = EY |X

[
X⊤(Xβ∗ − Y )

σ2

(Xβ∗ − Y )⊤X

σ2

]
= EY |X

[
X⊤ϵϵ⊤X

σ4

]
= X⊤Xσ−2.

Thus, Var(β̂) ⪰ (X⊤X)−1σ2 holds for all unbiased estimator β̂. As we have see, Var(β̂LS) =
(X⊤X)−1σ2. Therefore, it holds that

Var(β̂) ⪰ Var(β̂LS) for all unbiased estimator β̂ .

In that sense, the least squares estimator is called Best Unbiased Estimator (BUE).
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2.4 Mean Squared Error (MSE) of the least squares estimator

Question: How accurate is the LS estimator?
MSE is defined as

MSE = EY |X [∥β̂LS − β∗∥2].

MSE can be evaluated as

EY |X [∥β̂LS − β∗∥2] = σ2Tr[(X⊤X)−1],

because

EY |X [∥β̂LS − β∗∥2] = EY |X{Tr[(β̂LS − β∗)(β̂LS − β∗)⊤]} = σ2Tr[(X⊤X)−1].

Now, we evaluate how MSE is dependent on the dimension p. To do so, we assume that xi

is i.i.d. random variable generated from a distribution that satisfies Ex[xx
⊤] = S(∈ Rp×p).

By the low of large numbers, we have that

X⊤X

n
→ S (in probability).

This implies that

EY |X [∥β̂LS − β∗∥2] = σ2

n
Tr[(X⊤X/n)−1] → σ2

n
Tr[S−1] (in probability),

by the continuity of the inverse operation of a matrix (Slutsky’s lemma).
If S ⪰ λminIp ≻ O for some λmin > 0, then

σ2

n
Tr[S−1] ≤ σ2

n
Tr[(λminIp)

−1] ≤ p

n

σ2

λmin
.

This is linear to p (the dimension of the parameter).

Predictive accuracy is also an important performance measure. That (more precisely the
in-sample predictive accuracy) is defined as

Predictive accuracy = EY |X

[
1

n

n∑
i=1

(x⊤
i β

∗ − x⊤
i β̂LS)

]
.

(Check that 1
n

∑n
i=1(x

⊤
i β

∗ − x⊤
i β̂LS) is equivalent to EỸ |X [ 1n∥Ỹ − Xβ̂LS∥2] up to constant

where Ỹ is an independent copy of Y ). The predictive accuracy is evaluated as

EY |X

[
1

n

n∑
i=1

(x⊤
i β

∗ − x⊤
i β̂LS)

]
= EY |X

[
1

n
∥Xβ∗ −Xβ̂LS∥2

]
=

1

n
Tr[XVar(β̂LS)X

⊤] =
σ2

n
Tr[Ip] = σ2 p

n
.

The predictive accuracy is also linear to p. Therefore, if p is large compared to n, we don’t
have favorable estimation accuracy.

Question: What happens if β∗ is sparse? Can we improve the accuracy?
⇒ Yes. Model selection.
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3 Model Selection: AIC
AIC (Akaike’s Information Criterion) invented by Hirotugu Akaike is a criterion to
minimize the predictive accuracy. AIC is originally developed to specify the order of AR
model. It can be applied to not only linear regression but also other statistical models.
Suppose that the number of non-zero component of β∗ is small (the explanatory variable

contains a lot of redundant information). We want to estimate the index set of the non-zero
components (J := {j||β∗

j | ̸= 0}).

Note: Just choosing the index set that minimizes the empirical risk is not a good idea. →
Overfitting.

Let β̂Ĵ be the least squares estimator on the submodel Ĵ :

β̂Ĵ := argmin
β∈Rp:βĴc=0

∥Y −Xβ∥2.

Ideally if we know the true non-zero components, i.e. Ĵ = J , then

predictive accuracy of β̂Ĵ = σ2 |J |
n

≪ σ2 p

n
,

under a sparse setting |J | ≪ p. However, in practice, we don’t know J . Thus we need to
estimate that.� �

AIC(Ĵ) = ∥Y −Xβ̂Ĵ∥
2 + 2σ2|Ĵ |.

Choose Ĵ ⊆ {1, . . . , n} that minimizes AIC.� �
AIC is an unbiased estimator of the predictive error up to constant (if Ĵ includes J).

Minimizing AIC leads to a good predictive accuracy (indeed it is minimax optimal).

Proof. (Rough proof) Suppose that Ĵ includes J and let XĴ = (Xi,j)i=1,,̇n;j∈Ĵ (submatrix of

X with column indices Ĵ), then we have

EY |X

[
1

n
∥Xβ̂Ĵ −Xβ∗∥2

]
=EY |X

[
1

n
∥Xβ̂Ĵ − Y − ϵ∥2

]
=EY |X

[
1

n
∥Xβ̂Ĵ − Y ∥2 − 2

n
⟨Xβ̂Ĵ − Y, ϵ⟩+ 1

n
∥ϵ∥2

]
.

Now, observe that

EY |X

[
⟨Xβ̂Ĵ − Y, ϵ⟩

]
=EY |X

[
⟨XĴ(X

⊤
Ĵ
XĴ)

−1X⊤
Ĵ
Y −Xβ∗ − ϵ, ϵ⟩

]
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=EY |X
[
⟨XĴ(X

⊤
Ĵ
XĴ)

−1X⊤
Ĵ
(XĴβ

∗
Ĵ
+ ϵ)−XĴβ

∗
Ĵ
− ϵ, ϵ⟩

]
(∵ J ⊆ Ĵ)

=EY |X
[
∥XĴ(X

⊤
Ĵ
XĴ)

−1X⊤
Ĵ
ϵ∥2

]
− nσ2 = |Ĵ |σ2 − nσ2.

Then, we have that

EY |X

[
1

n
∥Xβ̂Ĵ −Xβ∗∥2

]
=EY |X

[
1

n
∥Xβ̂Ĵ − Y ∥2 + 2|Ĵ |σ2

n

]
− σ2

=EY |X

[
1

n
AIC(Ĵ)

]
− σ2.

Minimizing AIC is computationally much demanding (O(2p)).
⇒ NP-hard (submodular function maximization).
⇒ L1-regularization (Lasso) [7]: Convex optimization, statistically nice properties.

4 Estimation of low rank matrix: From vector to matrix� �
Model:

yi = ⟨Xi, A
∗⟩+ ϵi, (i = 1, . . . , n),

where ⟨X,A⟩ = Tr[X⊤A], Xi ∈ RealM×N is an explanatory variable, A∗ ∈ RealM×N is
the true matrix (supposed to be low rank), and ϵi is i.i.d. noise.� �

Basic idea:

min
A∈RM×N

n∑
i=1

(yi − ⟨Xi, A⟩)

s.t. rank(A) ≤ d.

Analogous to AIC minimization. The cardinality of non-zero components is replaced by rank.
Note that this is non-convex.

Applications:

• Computer vision
• Recommendation system [6] (NetFlix prize [3])
• Reduced rank regression [1, 4, 5]
• Multi-task learning [2]
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