3 Convergence of Sequences of Measurable Functions

Consider other types of convergence than $f_{n} \rightarrow f$ a.e. $-\mu$.

Def. 3.1

Let $p>0$.

- $L^{p}=L^{p}(\Omega, \mathcal{F}, \mu):=\left\{\right.$ measurable f s.t. $\left.\int|f|^{p} \mathrm{~d} \mu<\infty\right\}$
- For $f \in L^{p},\|f\|_{p}=\left(\int|f|^{p} \mathrm{~d} \mu\right)^{1 / p}$

Remark 3.1 We can see that L^{p} is a vector space (see Minkowski's inequality A. 2 and the remark thereafter in Appendix). ${ }^{1}$

Def. 3.2

$f_{1}, f_{2}, \ldots, f: \Omega \rightarrow \mathbb{R}, \mathcal{F} / \mathcal{B}(\mathbb{R})$-measurable
i) If $f_{1}, f_{2}, \ldots, f \in L^{p}(\Omega, \mathcal{F}, \mu), f_{n}$ converges to f in L^{p} or $f_{n} \xrightarrow{L^{p}} f$ $\Leftrightarrow\left\|f_{n}-f\right\|_{p} \rightarrow 0 \Leftrightarrow \int\left|f_{n}-f\right|^{p} \mathrm{~d} \mu \rightarrow 0$ as $n \rightarrow \infty$
ii) f_{n} converges to f in measure μ or $f_{n} \xrightarrow{\mu} f$ $\Leftrightarrow{ }^{\forall} \epsilon>0, \mu\left\{\omega \in \Omega:\left|f_{n}(\omega)-f(\omega)\right| \geq \epsilon\right\} \rightarrow 0$ as $n \rightarrow \infty$ When $\mu=\mathrm{P}$ (probability measure), convergence in probability $f_{n} \xrightarrow{\mathrm{P}}$ f
iii) f_{n} converges to f almost uniformly in μ or $f_{n} \rightarrow f$ a.u. $-\mu$ $\Leftrightarrow{ }^{\forall} \epsilon>0,{ }^{\exists} A \in \mathcal{F}$ s.t. $\mu\left(A^{c}\right)<\epsilon$ and $f_{n} \rightarrow f$ uniformly on A

Example $3.1 \Omega=[0,1], \mu=\lambda=\mathrm{P}$.

[^0]- $X_{n}=\left\{\begin{array}{ll}n, & \omega \in[0,1 / n] \\ 0, & \omega \in(1 / n, 1]\end{array} \Rightarrow X_{n} \rightarrow 0\right.$ a.s.
$\mathrm{P}\left(X_{n} \geq \epsilon\right)=1 / n$ for $\epsilon<1 \quad \Rightarrow X_{n} \xrightarrow{\mathrm{P}} 0$
However, for $p>0$,
$\int\left|X_{n}(\omega)\right|^{p} \mathrm{~d} \omega=n^{p-1} \rightarrow\left\{\begin{array}{ll}0, & p<1 \\ 1, & p=1 \\ +\infty, & p>1\end{array} \Rightarrow X_{n} \xrightarrow{L^{p}} 0\right.$ only for $p<1$
- $X_{n, m}(\omega)=\left\{\begin{array}{ll}1, & \omega \in\left(\frac{m-1}{n}, \frac{m}{n}\right] \\ 0, & \text { o.w. }\end{array} \quad m=1,2, \ldots, n, \quad n=1,2,3, \ldots\right.$
$\Rightarrow \int\left|X_{n, m}(\omega)\right|^{p} \mathrm{~d} \omega=\frac{1}{n} \rightarrow 0 \Rightarrow X_{1,1}, X_{2,1}, X_{2,2}, X_{3,1}, X_{3,2}, X_{3,3}, \ldots \xrightarrow{L^{p}} 0$
$\mathrm{P}\left(X_{n, m} \geq \epsilon\right)=1 / n$ for $\epsilon \leq 1 \quad \Rightarrow X_{n, m} \xrightarrow{\mathrm{P}} 0$
However, for any $\omega \in(0,1]$, lim sup $X_{n, m}(\omega)=1, \quad X_{n, m}(\omega)=0$
$\Rightarrow X_{n, m}$ does not converge a.s. nor a.u-P
We compare these types of convergence.
Thm. 3.1
$f_{1}, f_{2}, \ldots, f \in L^{p}(p>0), \quad f_{n} \xrightarrow{L^{p}} f \Rightarrow f_{n} \xrightarrow{\mu} f$

This is an immediate consequence of Markov's inequality A. 1 in Appendix.

Thm. 3.2

$f_{n} \rightarrow f$ a.u. $-\mu \Rightarrow f_{n} \xrightarrow{\mu} f \& f_{n} \rightarrow f$ a.e. $-\mu$

Thm. 3.3 (Egorov's Thm.)

If μ is finite, $f_{n} \rightarrow f$ a.e. $\mu \Leftrightarrow f_{n} \rightarrow f$ a.u. $-\mu$

Remark 3.2 If μ is finite, $f_{n} \rightarrow f$ a.e. $\mu \Rightarrow f_{n} \xrightarrow{\mu} f$

A Appendix

A. 1 Useful Inequalities in Integrations

Thm. A. 1 (Hölder's Inequality)

For $1<p, q<\infty$ s.t. $1 / p+1 / q=1, f \in L^{p}, g \in L^{q}$
$\Rightarrow \quad f g \in L^{1}$ and $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$

Remark A. 1 When $p=q=2 \Rightarrow$ Schwarz's inequality
$\left(\int|f g| \mathrm{d} \mu\right)^{2} \leq \int|f|^{2} \mathrm{~d} \mu \int|g|^{2} \mathrm{~d} \mu$

Thm. A. 2 (Minkowski's Inequality)

For $1 \leq p<\infty, f, g \in L^{p} \Rightarrow f+g \in L^{p}$ and $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$

By Minkowski's inequality along with $\|c f\|_{p}=|c|\|f\|_{p}$ for $f \in L^{p}$ and $c \in \mathbb{R}$, we can see that L^{p} is a vector space.

Lem. A. 1 (Markov-Chebyshev Inequality)

$h: \Omega \rightarrow \mathbb{R}$, Measurable and nonnegative
$\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$, positive and nondecreasing
For $\epsilon>0, \mu(\{\omega \mid h(\omega) \geq \epsilon\}) \leq \frac{1}{\phi(\epsilon)} \int \phi(h) \mathrm{d} \mu$

Chebyshev's Inequality

Let $\mu=\mathrm{P}$ and X be a random variable.
$\mathrm{E}(X)=\int_{\Omega} X(\omega) \mathrm{P}(\mathrm{d} \omega), \quad \operatorname{Var}(X)=\mathrm{E}\left[(X-\mathrm{E}(X))^{2}\right]=\int_{\Omega}(X(\omega)-\mathrm{E}(X))^{2} \mathrm{P}(\mathrm{d} \omega)$
\Rightarrow Take $h(\omega)=|X(\omega)-\mathrm{E}(X)|, \phi(x)=x^{2}$ in Lem. A. 1
$\mathrm{P}(|X-\mathrm{E}(X)| \geq \epsilon) \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}}$

[^0]: ${ }^{1}\|\cdot\|_{p}$ is not a norm but a seminorm on L^{p}. However, $\|\cdot\|_{p}$ is a norm on the quotient space L^{p} / I with quotient set $I=\{f=0$ a.e. $-\mu\}$; that is the set of $[f]=\{$ measurable $g \mid g=f$ a.e. $-\mu\}$, $f \in L^{p}$ (This is Bruno's comment in the class).

